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1. Executive Summary 
 
Robots are truly an innovative technology and have the ability to perform tasks that 
humans could not to do alone. As the age of computer programming and electronic 
circuitry progresses, robots are becoming less limited to solve problems and create a 
better lifestyle. There is no doubt that without the aid of robots manufacturing would not 
be made possible, dangerous missions would not be carried out, and automation would 
not exist. Some would say that robots are faster and smarter than humans since 
computing can be processed at lightning speed. Although robots do not take on the full 
nature of a human being, they do require some parts to be able to act like a human. 
Most robots contain a brain for processing information and the use of sensors that act 
as eyes for interacting with the outside world. Robots would also contain arms and legs 
or wheels and motors to help them move around. Some robots are built for everyday 
use, some robots are used for fun, and there are also robots that can be used with Nerf-
blasters. 
 
A human can be able to detect a field of interest and identify a target and shoot these 
targets with a nerf-blaster, but what if a robot could do the same thing yet faster and 
with more accuracy? This project is set out to use technology in order to create a robot 
that would be able to automatically find targets and fire upon them with the use of Nerf-
blasters. This will allow faster reaction time and accurate readings of targets all 
automatically. The robot will able to map out an area using sensors and cameras and 
would be trained on what targets to fire a nerf-blaster upon.  
 
This project documentation paper goes in detail with the motivation of the project, 
extensive component research, algorithm, and computer programming research. There 
is also research dedicated to the related standards on the market today that are 
compared to the different areas where this project would utilize these standards. There 
are sections devoted to strategic hardware and software design as well as physical 
chassis designs. Each section is labeled with the title and a brief description of the title 
and its subsections.  
 
This project is funded and overseen by Lockheed Martin with an overall $2,000 budget - 
$1,000 maximum for an as-demonstrated robot cost. This project is one of three robot 
projects each with a full engineering team consisting of computer science, electrical, 
mechanical, and computer engineering majors. All three robot projects will participate in 
a competition set out to battle against each team’s robot to find out which one would be 
the best in automatic detection and accurate firing mechanisms.  
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2. Project Description 
 
This chapter covers the motivation, objective and goals for this project. 
 

2.1. Motivation 
 
The motivation for this project to explore the possibilities of what it takes to make robot 
automation a reality. Also taking up the opportunity of managing among other 
engineering disciplines to get an idea what it takes to plan a project with several 
different departments. The challenge will be understanding how a system can map an 
area using sensors and create an image within the mapping. Since this type of project 
has not been approached before, it will be interesting to be able to utilize each person 
on the team and put their education to the test and to be able to practice research 
strategies as a team. 

 
2.2. Objective and Goals 
 
The objective for this project, amongst other things, is to build a robot that has 
capabilities to be manually navigated through wireless connection. The robot will also 
contain an automatic system that uses algorithms and sensors to automatically search 
and detect objects, such as targets. There must be a combination of two sensor 
modalities using examples such as mid-wave infrared imagery, LIDAR point clouds, 
visible spectrum imagery or radar returns. These targets will be fired upon automatically 
using Nerf-blasters, darts, and balls. 
  
When the entire robot is completed, the goal for this project is to win a competition that 
will take place against two other robots with the same automated system. This 
competition has a set of rules and regulations to follow. All the requirements for this 
project can be found section 2.3, Requirements and Specifications. 
  
As for the competition, Figure 2.1 displays an example of the playing field. Two 
opposing robots will be placed in their respective zones, A and B, which will have 
dimensions of 20ft x 20ft. There will be a 20ft x 10ft restricted zone with obstacles in the 
center of the field. In order to win the competition, the robot must be able to score the 
most amount of points. 
 
The point system is as follows: Two points for enemy bot impact with Nerf-ball. Four 
points for enemy bot impact with a nerf dart. Two points for course target impact in 
opposite zone; choice of ammo can be ball or dart. Only a maximum of two hits per 
match is scored on stationary targets. Eight points is scored for impacts with enemy 
target robot medic. The robot medic takes on the responsibility of repairing the robot 
during the match and if the opposing robot can detect the medic, it is allowed to shoot at 
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them. Only one robot repair is allowed per round. A deduction of five points will be in 
effect if the robot enters the restricted zone or moves out of bounds.  

 
Figure 2.1: Example of the playing field 

 

2.3. Requirement Specifications  
 
This project has a set of requirement specifications to ensure that the robot is being built 
correctly and successfully. Lockheed Martin has set specifications to create a 
standardized robot for the competition and some members of the group conducted 
some specifications that are abstract, unambiguous and verifiable. The following 
sections note the requirement specification as well and the details on how to verify 
them. 
 

2.3.1. Size 
 
The first engineering specification is the size, seen in Table 2.1. Lockheed Martin set 
this standard so that the robot cannot be too large or inadequate to hold all the 
components of the robot. 
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Requirement ID Description  Verification 

S1 Total robot dimensions 
shall not exceed 3ft x 3ft x 
3ft.  

Standard to battlebot 
competition 

Table 2.1: Size Requirements 
 

2.3.2. Object Detection 
 
There are four engineering requirements in object detection, seen in Table 2.2. The 
requirements are specified by how far the target is, what kind of target and fire promptly 
on the appropriate targets. 
 

Requirement ID Description  Verification 

OD1 Be able to automatically 
detect objects to a distance 
up to 45ft. 

Standard to battlebot 
competition. 

OD2 To be able to automatically 
detect and highlight three 
different targets with a 51% 
accuracy rate. 

Standard to battlebot 
competition. 

OD3 Must be able to 
automatically determine 
the distance of three 
targets up to 50ft. 

Simulating various targets 
at different ranges. 

OD4 Be able to detect moving 
target with a movement 
speed range of 1 to 3 m/s. 

Utilizing a sample robot for 
target acquisition. 

Table 2.2: Object Detection Requirements 

 
2.3.3. Power 
 
There are two power requirements, seen in Table 2.3, to ensure the robot stays working 
and can supply enough power to the robot. The table below will identify the requirement 
number, give a brief description and list the way to verify. 
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Requirement ID Description  Verification 

P1 Power supply must be able 
to last a minimum of 25 
minutes. 

Using the system for two 
10 minute rounds. 

P2 To be able to operate at 
12V and draw a maximum 
of 3A. 

Based on total power 
consumption of the system 

Table 2.3: Power Requirements 
 

2.3.4. Mobility 
 
There are two requirements specifications on what kind of movement this robot will be 
allotted to have. These requirements are listed in Table 2.4. 
 

Requirement ID Description  Verification 

M1 Be able to remotely control 
the Battlebot. 

Testing with the use of a 
remote control in each 
direction the Battlebot must 
turn. 

M2 Be able to track the 
distance it travels. 

Measure the distance it 
moves. 

Table 2.4: Mobility Requirements 

2.3.5. Cost 
 
While there are several possibilities on building a robot, there is a budget and this robot 
cannot exceed the demonstrated cost of $1000.  
 

Requirement ID Description  Verification 

C1 As demonstrated cost 
cannot exceed $1000. 

Optimizing components 
under $1000 for the final 
build. This is based on 
Lockheed Martin’s budget 
requirements. 

Table 2.5: Cost Requirements  
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2.4. House of Quality Analysis 
 
This section discusses a house of quality for this project. The house of quality is a 
diagram that shows how this project will be able meet consumer’s standards, but with 
some engineering tradeoffs.  Since there are tradeoffs between different requirements, 
it is important to understand them so that they can establish the meaning of the 
requirement as well as provide solutions to these trade-offs.  
 
The four marketing requirements that deem suitable for this project would be detection 
accuracy, firing accuracy, low power and cost. The six areas of quality tradeoffs are the 
range of detection, object recognition accuracy, fast processor, memory dimensions, 
and cost.  
 
In the table below each requirement contains a polarity. This polarity indicates positive 
and negative symbols which shows a desire of the requirement. An example would be 
that low power is a positive requirement since it is more desirable to the project while 
cost is a negative requirement since the project does not want a high cost.  
 
The arrows are for positive and negative correlation. The arrows in the upward direction 
indicate positive correlation in which both requirements can be improved together while 
the arrows in the downward direction are where the two requirements will contradict one 
another. An example would be having too high firing accuracy will result in more cost in 
technology which becomes a negative correlation to the requirements. 
 
Table 2.6 contains the marketing tradeoffs for this project with specific number values at 
the bottom of the table. The legend is for the reader to understand what each symbol in 
the table represents. All trade-offs are considered in order to prevent an imbalance 
within the system and are mapped in Table 2.6. Ideally, considering all positives and 
negatives will lead to a complete build that will satisfy all requirements listed above in 
section 2.3 Requirement Specifications. 
 
 
Legend 

↑       Positive Correlation 

↑↑     Strong Positive Correlation 

↓       Negative Correlation 

↓↓     Strong Negative Correlation 

+       Positive Polarity (Increasing requirement) 
-        Negative Polarity (Decreasing requirement) 
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 Range of 
Detection 

Object 
Recognition 
Accuracy  

Fast 
Processor 
(Clock  
Speed) 

Memory Dimensions Cost 

+ + + + + - 

Detection 
Accuracy 

+ ↑↑ ↑↑ ↑↑ ↑↑ ↑↑ ↓ 

Firing 
Accuracy 

+ ↑ ↑ ↑↑ ↑↑ ↑↑ ↓ 

Low Power +   ↓ ↓ ↓ ↑↑ 

Cost - ↓↓ ↓ ↓↓ ↑  ↑↑ 

  ≈45ft ≈51% ≥1GHz ≥512MB 3 x 3 x 3 ft ≤$1000 

 Table 2.6: Engineering-Market Trade-Off Matrix 
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3. Research 

 
Section 3, Research, contains extensive study among similar projects as well as 
component comparisons in order to produce the robot for this project. It is broken down 
into different subsections addressing the areas of needs to make this project work.  

 
3.1. Similar Projects 
 
This section displays similar projects that have been found and assembled as research 
for the current system discussed in this paper. These projects showcase a self-targeting 
autonomous turret system, an autonomous sentry robot, and an autonomous chasing 
robot. All of these projects are past projects completed at the University of Central 
Florida. The projects are explained in further detail within this section including brief 
descriptions, components researched, and software approaches for development each 
project. 
 
The first project, the self-targeting autonomous turret system (STATS), is very similar to 
the current proposed system. STATS was developed by UCF students Elso Caponi, 
Michale Lakus, Ali Marar, and Jonathan Thomas. STATS uses software in order to 
successfully attack moving targets. STATS is a camera based weapon system; 
therefore, it uses the camera sensor in order to detect, aim and fire. Targets were 
named to be hostile or friendly with by different coloring or different radio frequency 
indications, RFID. 
 
The weapon of choice for STATS was an automatic airsoft gun. On the gun, a warning 
siren was implemented to signal possible incoming threats. The gun was able to move 
in both the X and Y plane via two servo motors. Individuals involved with STATS chose 
to have the turret controlled by a tablet. Students chose to have the tablet connect 
wirelessly to the turret. A live video feed was also sent to the tablet from the turret. Wi-fi 
modules were necessary in order to successfully send over this video feed. 
 
Components used in implantation of STATS include a microprocessor, two servo 
motors, a camera, a PCB, a tablet, power supply, a microcontroller, a laser device, 
alarms and an airsoft gun. Most of these components have already been explained 
above. However, further detail will be described regarding some of these components. 
A laser device was implemented with the guns in order to accurately point and shoot at 
targets reading in data from a distance. The system was powered with both internal 
batteries as well as AC-DC electricity. 
 
STATS team implemented concepts based off computer vision in their software build. 
The idea that the STATS team used involves algorithms that are used to determine the 
distance pixels have moved in between frames. These algorithms are initiated as the 
tracking method begins. Using all the different pixel locations, estimations on the targets 
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next position is calculated. By estimating a target’s next location, the STATS team was 
able to fire accordingly taking into account the time it takes between a shot fired and the 
shot actually hitting the target. 
 
Another similar project to the robot of the proposed system is the autonomous sentry 
robot. The autonomous sentry robot was developed by UCF students Brian Dodge, 
Nicholas Musco, and Trevor Roman.This robot has many similarities to that of STATS 
and the proposed system. There is heavy research within this project on the capabilities 
of SLAM as well as sensor research that includes Lidar, Kinect, and a standard 
webcam. 
 
The purpose of this autonomous sentry robot is for security in enclosed buildings. More 
than one sensor is used in this project as well in order to navigate autonomously and 
build a map of the surrounding area effectively. Sensor data is processed by either a 
microprocessor or a laptop. Once the robot has built an efficient map of an area, the 
robot is able to detect if any changes occur to the original mapping. If so, the owner can 
be alerted through a mobile application of the change in environment. The owner can 
navigate the robot using the mobile application and will receive a live video feed straight 
to their smartphone. 
 
The sentry robot’s design allows it to navigate fully autonomously. Only when the owner 
chooses to use the mobile application for navigation will the robot stop navigating on its 
own. The robot will even go back to its charging station when necessary in order to 
“refuel”. Objects that are unable to be viewed or seen by the camera was taken into 
account through development of this project. Many requirements such as low power, 
low maintenance, ease of use, and low latency were described accordingly in this 
project. 
 
The hardware design resembles that of STATS and of the proposed system. The 
electrical components consist of a battery, charger, charging station, sensors, and a 
microcontroller. For software design, more information is given on SLAM and how it is 
proposed to work with autonomous navigation in their system. A logical breakdown for 
every autonomous feature is broken down and explained accordingly for further 
reference. 
 
The last project that shows similarities to the proposed system is the autonomous 
chasing robot. The autonomous chasing robot was developed by UCF students Bryan 
Diaz, Victor Hernandez Salomon, Khanh Le, and Luis Sosa. The robot was designed to 
be able to follow any object in motion. As the robot detects an object in motion, it will 
prepare to get close as fast as possible to said object. Instead of pointing directly at a 
target, the robot was designed to be able to follow the same path of an object in motion. 
 
Sensors as well as image processing are two main features to the functionality of this 
robot. A big factor that needed to be considered in their project implementation was the 
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acceleration and deceleration of the robot depending on the position of the object in 
motion. The system also calls for an android application as a means of controlling the 
robot manually if preferred. One idea of implementation for this robot in an everyday 
setting was its use with police officers. Their idea was to have a police officer able to 
navigate the robot via their smartphone. If an item is defined as a “blacklist” item, in this 
case in terms of a license plate, it will pick up on these numbers and inform the officer 
accordingly. 
 
All of these projects demand focus in the area of computer vision. The software 
implementation is one of the main features of success in every autonomous system. 
Hardware designs for all projects have many similarities while building an autonomous 
system within similar price ranges. Even though the proposed system will be used to fire 
at another battlebot in motion, the characteristics of each project remain the same with 
different objectives. 
 

3.2. Field Mapping/Localization 
 
Field Mapping and Localization may assist in the autonomous detecting, aiming, and 
firing of the proposed system. 
 

3.2.1. SLAM 
 
In order to satisfy the requirements of this project that the robot must have autonomous 
detecting, aiming, and firing, various algorithms were researched. One concept, SLAM, 
was chosen as a top contender for this project. In the following paragraphs, an 
introduction, history, consideration before implementation, explanation, and ideas of 
SLAM or SLAMMOT implementation will be illustrated. Finally, some robotic projects 
with implementation of both SLAM and SLAMMOT will be discussed to show 
possibilities that each should offer. 
  
SLAM, which stands for Simultaneous Localization and Mapping, is a process that can 
be used to create a map of an environment and compute a current location on this map. 
SLAM consists of a wide range of algorithms that come together in order to solve the 
problem.  
 
The idea is to be able to place a robot in any unidentified environment and allow the 
robot to build and constantly improve upon a map of its surroundings. The robot will 
then be able to navigate within its environment knowing its exact location which is 
shown on the map. SLAM has heavily impacted robot designs as it has the capability of 
creating autonomous robot systems. SLAM has been implemented in various different 
robots, ranging from a standard indoor robot to some robots that can navigate 
effectively underwater. An example of a SLAM map has been provided below in Figure 
3.2. 
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SLAM was originally developed by Hugh Durrant-Whyte and John J. Leonard. Durrant-
Whyte and Leonard aimed to solve the constant conceptual and computational mapping 
problem that was found within robotics. A crucial point that Durrant-Whyte and Leonard 
were trying to prove was that there is a connection between estimates of different 
landmark locations in a map. Once landmark correlation was focused on and the 
mapping and localization problem was looked upon as convergent, the SLAM problem 
was established. As more research and development came into play, individuals began 
using SLAM efficiently within various projects. 
  
The SLAM concept consists of various parts; these parts include data association, state 
estimation, state update, landmark extraction, and landmark update. Some of these 
concepts, such as data association, will be explained in further detail within this 
document.  
 
Before considering SLAM algorithms, it is important to note the different variables that 
must be considered for development. This includes the range detector or vision sensor 
as well as robot capabilities and specifications. Odometry performance must also be 
considered, which measures how accurately the robot can determine its location based 
on wheel rotation. An encoder can be used in order to capture the robot’s location 
based on wheel rotation within this project. A robot cannot have more than a 2 cm per 
meter moved error as well as a 2 degree per 45 degree turned error. 
  
Depending on whether a vision sensor or a rangefinder is implemented in order to 
develop a map of the robot’s surroundings, various possibilities must be considered. 
Since two sensor modalities must be utilized in order to successfully detect, aim, and 
fire at targets, either sensor can be used in correspondence to the SLAM process while 
the other sensor may be used for more information in order to achieve further accuracy. 
 
A rangefinder can provide little computation, efficiency, and precision. However, prices 
in regards to capabilities of each rangefinder must be considered. A vision sensor can 
provide more information than a rangefinder, but requires more computation. Also, 
changes in light may also affect the vision sensor. Since brightness conditions for the 
robot’s environment have not been divulged for this project, the possibility of error using 
a vision sensor must be extensively considered. 
  
Assuming the robot uses the LIDAR Lite v3 Laser Rangefinder (discussed in section 
3.3.1.1) to implement the SLAM process, the position gathered by the encoder will be 
corrected by the information collected from the laser. In order to accomplish this feat, 
characteristics of the environment, often referred to as landmarks, must be extracted 
and reexamined when the robot is in motion. An EKF, Extended Kalman Filter, is 
responsible for updating a robots’ position based on these landmarks. A simple outline 
regarding how the SLAM process works in accordance with the laser scan, landmark 
extraction, data association, and EKF is shown in Figure 3.1 below. 
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Figure 3.1: Outline of the SLAM Process 

(Request Pending by SLAM for Dummies) 
  
As the rangefinder and the encoder work in accordance with one another in order to find 
out the exact position of the robot, timing of both data enquiries must be considered. 
The laser data may become outdated if odometry data is achieved too late. 
Extrapolation of the odometry data, estimations of what the data will be, are used in the 
SLAM process to avoid this error of incorrect data timing. 
  
Establishing which landmarks will be found by the robot in this project requires more 
research. Points to consider regarding landmarks includes being re-observable, 
distinguishable, plentiful, and stationary. For this project, using a rangefinder to detect 
boundaries will be very difficult, since boundaries were described as marked but not 
necessarily 3D. For instance, the boundary might be tape or another flat 2D object, 
which will give the rangefinder nothing to detect. 
  
If boundaries are needed in order to effectively detect, aim, and fire, a vision sensor 
should be considered for project implementation. However, a rangefinder will be able to 
successfully pick up on stationary targets as well as the stationary obstacles placed 
within the field. Discounting objects in motion as landmarks, such as the robot or medic, 
is highly important to note, since the main target will always be in motion. 
  
One algorithm that can be used regarding SLAM is the RANSAC algorithm. RANSAC, 
Random Sampling Consensus, may be used to extract lines from a rangefinder. Once 
the rangefinder scans multiple times, these reading are then compiled into a best fit line. 
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The algorithm then checks how many readings are actually close to the best fit line. 
Taking into account a certain threshold, one can successfully assume whether a 
landmark has been found accordingly. This threshold is called the consensus within the 
RANSAC algorithm. 
  
Some things must be taken into consideration regarding the RANSAC algorithm; these 
include the amount of times the programmer would like to attempt to find lines, the 
amount of lines the programmer would like to use in order to create the best fit line, how 
many degrees to take into account for each reading, the maximum distance the reading 
will be able to go, and the number of points on each line for it to be considered. Without 
taking into account these scenarios, the RANSAC algorithm may result in failure. 
  
Another algorithm that is used often in SLAM with RANSAC is the Spike algorithm. 
Extrema is used in the Spike algorithm in order to successfully locate landmarks. One 
must be cautious of the Spike algorithm, since it has a chance to fail in smooth 
environments. The algorithm itself relies on landscape change between two laser 
beams. This algorithm is great for finding things that lie in front of a wall; objects that are 
static, but are not actually the barrier of the room. In this case, the obstacles and static 
targets may be considered as “spikes’ within SLAM. A more intricate example of these 
spikes as well as the edges drawn on a SLAM map can be seen below in Figure 3.2 
Figure 3.2 illustrates just one of the many possibilities that SLAM has to offer in terms of 
accurate mapping. 
 

 
Figure 3.2: Intricate SLAM Map showing spikes and edges 

(Request Pending by SLAM for Dummies) 
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3.2.2. SLAMMOT 
 
If SLAM proves to be incapable of delivering the specified requirements due to the lack 
of being able to track moving targets, an alternative solution must be considered. 
Building onto SLAM in order to successfully track moving targets, SLAMMOT may be 
able to fill this role. SLAMMOT, Simultaneous Localization, Mapping and Moving Object 
Tracking, is very similar to SLAM, but encompasses moving object tracking, which will 
be necessary if the medic or robot will be marked on the map. It encompasses SLAM as 
described above with stationary objects and SLAM with detection and tracking of 
moving objects (DATMO). SLAM alone may perform poorly since the assumption of 
only static objects will be violated. 
 
SLAMMOT may be used with either a vision sensor or a rangefinder, similar to that of 
SLAM. If a camera is used with SLAMMOT, appearance based approaches are widely 
used to detect moving objects. Either monocular SLAMMOT or stereo based 
SLAMMOT can be considered. However, if a laser scanner is used, feature based 
approaches can be used to detect moving objects alternatively. Opposite of SLAM, a 
camera may actually be more beneficial with the use of SLAMMOT, since objects in 
motion may be easier to track as opposed to using a laser scanner. 
 
Assuming monocular SLAMMOT is used in this project in order to build a map of the 
environment as well as successfully track moving targets, data association can be 
achieved using either 2D image matching or 3D estimates of the filter. New features or 
landmarks are still put under the stationary hypothesis that would be used with local 
SLAM.  
 
Using SLAM, up to 30 static features can be seen at at time and the map will update 
after 20 EKF updates. When a new landmark is found, two monocular SLAM would be 
initialized under two hypotheses. One is SLAM without adding a new landmark and one 
is SLAM assuming the landmark is stationary. Using both the negative inverse depth 
based method and the binary Bays filter-based method will be that basis of SLAMMOT. 
 
Many projects that have been found using SLAM involve autonomous vehicles that can 
navigate an area. Outdoor projects and airborne projects have also used SLAM to 
properly navigate. One project found using SLAMMOT describes trying to incorporate 
SLAMMOT on a large scale in urban areas to lead towards fully autonomous vehicles in 
a human interactive environment. SLAMMOT has been attempted in different projects 
using either a monocular camera or a stereo camera. It has been found that it is 
possible to use SLAMMOT with a range sensor alone, however, data may be harder to 
track with objects in motion.  
 



 

15 
 

3.3. Sensors 
 
As per project requirements, two sensor modalities were needed. Below is information 
on the sensors that were discussed. 
 

3.3.1. Range Finders 
 
While computer vision algorithms can be used to detect objects based off images, 
whether a picture or a frame from a video, they typically do not provide information on 
how far the object is from the source of vision. This type of information, target distance 
(the distance of an object from a source point), is typically done by what is known as a 
rangefinder. 
 
It is necessary to determine how far a target is from the robot so that the robot can 
make a decision on whether or not it should fire at the target and how it should fire (i.e. 
is the target in bounds of the course, is it in the enemy zone, do the guns need to 
accommodate for distance by arcing, etc.). Therefore, one of the two sensor 
mechanisms of the battlebot system should be able to acquire the distance from the 
vision sensor.  
 
Several range finders exist, but many are simply out of the budget or do not meet at 
least a 20 foot range of detection. Most of the range finders in the robotics market that 
are within the budget are made of laser or ultrasonic systems.  
 
While researching range finders, of any kind, the first thing that was observed before 
progressing through any other specifications was the maximum range the sensor could 
reach. For the purposes of this robots targeting system, an ideal max detection range 
would be at least 40 feet in order to span the course from front to back. If the sensor 
specified that it could not detect an object at more than 40 feet the research of that 
sensor was immediately tossed. 
 

3.3.1.1. Laser 
 
Laser range finders are quite expensive, but their advantages warrant the cost. The 
laser range finders reach farther distances for target detection and are able to provide 
distance information at a more frequent and faster rate. This will allow the the robot to 
update the changes in position of an enemy target more rapidly and reduce delay with 
the firing mechanism. As an added bonus, some laser sensors provide a laser guide 
that may be beneficial for testing purposes. For example, the laser guide could be used 
to calibrate targeting so that the rangefinder is pointing at what it needs to be pointing 
to.  
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Some minor disadvantages of a laser range finder are its inability to detect the range of 
transparent objects as the laser will go right through the material. Another possibility is 
loss of the laser on the return trip by interference from other forms of light such as the 
sun when outdoors or by windows. However, both of these disadvantages are believed 
to be non-issues for this project as the field will be in an indoors environment and 
enemy targets are presumed to be non-transparent.   
 
With a limited as demonstrated budget for the nerf battlebot system, it was only logical 
to search for a product that met the basic needs of range detection for a distance of 
about 40 feet and did not over do the job. Unfortunately, there are currently only a 
handful of laser range finder models on the market that met both budget and 
performance demands. The laser range finders found and researched are listed and 
compared in Table 3.1.     
 

Name Price 
($USD) 

Max Range Accuracy Size 

TeraRanger Duo ToF 
Rangefinder with Sonar 
Sensor 

$207.20 45.93 ft +/- 2 cm 5.3 x 4.4 x 2.5 cm 

LIDAR-Lite 3 Laser 
Rangefinder 

$149.99 131.23 ft +/- 2.5 cm 2 ✕ 4.8 x 4 cm  

LeddarTech Leddar 
One Optical 
Rangefinder 

$115.00 49.21 ft +/- 5 cm 2” Diameter 

Table 3.1: Comparison of laser range finders 
 

Any three of these range finders listed in Table 3.1 appear to adequately do job solely 
based on the specifications listed, but the question is price versus performance. Is the 
slight increase in performance worth the moderate increase in cost considering the 
budget is very limited? 
 
The specifications for the LIDAR-Lite 3 are very appealing in comparison to the 
TeraRanger Duo and LeddarTech Leddar One rangefinders. This is because its max 
range is almost triple that of the others and it is twice the accuracy of the LeddarTech 
One and only 0.5 cm less accurate than the more expensive TeraRanger Duo. As for 
size, it is much larger than the LeddarTech Leddar One, but slightly smaller, by volume, 
than the TeraRanger Duo. The TeraRanger Duo does offer a second form of range 
finding - a sonar sensor - but it is unlikely that both the laser and sonar functionality will 
be used in conjunction with each other or that the sonar will be used over the laser 
sensor. 
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A 0.5 cm difference in accuracy (LIDAR-Lite 3 versus the TeraRanger Duo) can make a 
world of difference however. These evaluations must be justified after reviewing other 
electrical components and also the mechanical construction aspect of the robot to see 
where there is any freedom in budget. At any rate, it is of best interest to invest a good 
portion of the budget on the automated detecting and firing system of the robot as that 
is a fundamental function.    
 

3.3.1.2. Ultrasonic 
 
While there are a plethora of ultrasonic sensors available on the market, almost all of 
them fail to reach a max range detection distance of over 20 feet (even with the higher 
end and more expensive models). 
 
Additionally, ultrasonic sensors have other drawbacks than not having long distance 
range detection. During the transmission of an ultrasonic sound, sound interference is 
possible, whether that be absorption of the sound into low density materials or a similar 
sound being produced by another source resulting in a false reading. This is a cause for 
concern, because it is unknown if anything in the building hosting the playing field will 
create a sound emission that will confuse the sensor or if an obstacle is made up of low 
density material such as low density foam. 
 
This combination of difficulties meant that ultrasonic sensors were out of the question 
for this project. These type of budget sensors are not designed for long distance range 
detection and are not very reliable for autonomous firing systems. 

 
3.3.2. Camera and Vision Sensors 
 
It is no secret that the camera plays an important role in the overall success of this 
project. Its job is to provide the processing unit with a stream of images that will be 
analyzed to detect, track, and aim at the targets. This is an enormous responsibility, and 
thus we had to study the impact of many of their features on our design and understand 
the tradeoffs at play. When considering cameras, the things that mattered most were 
the resolution range, frame rate, angle-of-view, cost, and compatibility with the other 
hardware and software in our system. 
  
Resolution is instrumental to the accuracy of our system. The higher it is the more detail 
we have to determine if an object is a target. It makes clear sense to maximize this, but 
we also have to keep in mind that the higher the resolution, the larger the processing 
overhead would be. The group agreed that a High Definition resolution of 720p (1280 x 
720) would suffice, but we searched for options with higher resolutions, that could be 
downgraded if proved to be too much.   
  
Frame rate was very important since our system needs to work in real time. Any latency 
between receiving frames and their processing could be the difference between hitting 
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and missing the target. Thus the group decided that a frame rate of around 30 frames 
per second would be needed. 
  
Angle-of-view is also important since our strategy involves having as much of the 
playing field in view as possible. The bigger the angle-of-view, the more of the physical 
scene we capture at a given distance.  
 
The Raspberry Pi Camera Module v2, Pixy CMUcam5, and the Logitech C920 are 
among the most popular choices today in robotics projects and would be well suited for 
ours. The comparison of these vision sensors are seen below in Table 3.2. 
 

3.3.2.1. Raspberry Pi Camera Module v2 
 
The Raspberry Pi Camera Module v2 is a great option for our system. First, because it 
is a high-definition camera, capturing a picture at resolutions up to 3240 x 2464 at 15 
frames per second. 15 frames per second is less than we require, but the resolution can 
be lowered to achieve higher frame rates. For example, it can record a resolution of 
1080p at 30 frames per second, and it can do 720p at 60 frames per second. Also it has 
a decent angle-of-view of 62.2 degrees horizontal x 48.8 degrees vertical. A huge plus 
for this camera is that it is supported by a large community of Raspberry Pi users, which 
will be handy if we encounter any trouble interfacing with it. Although it is compatible 
with all Raspberry Pi models, it cannot interface with many other boards directly since it 
uses CSI (Camera Serial Interface) as its output, a specialized interface for the 
Raspberry Pi. Therefore, making this camera a great choice only if we have a Pi to pair 
it with.  
  

3.3.2.2. Pixy CMUcam5 Image Sensor 
 
Another camera that we have looked at is the Pixy CMUcam5 Image Sensor. It has a 
native image resolution of 1280x800 and records this at 25 frames per second. It has 
the largest angle-of-view of the cameras we considered, getting 75 degrees horizontally 
and 47 degrees vertically. It is highly compatible with microcontrollers, as it has data 
outputs of UART serial, SPI, I2C, USB, digital, and analog. What makes the Pixy unique 
is that it has its own processor and it is pre-programmed to do object detection. By the 
push of a button, it can learn to detect objects of a certain color signature, and shape. 
Another plus for the Pixy is that it is compatible with programming languages C, C++, 
and Python.  
  

3.3.2.3. Logitech HD Pro Webcam C920 
 
The Logitech HD Pro Webcam C920 is another great option we found. It has been a 
popular choice in vision projects, and it is easy to see why. It records in full high-
definition 1080p, at 30 frames per second. It has a large diagonal angle-of-view of 78 
degrees, which at an aspect-ratio of 16:9 translates to 70.42 degrees horizontal and 
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43.30 degrees vertical. It is a universal plug-and-play device which connects via USB 
2.0. Another advantage of using this camera is it has H.264 video coding. By accessing 
this format of video stream the video quality will remain high, but compressed to low bit 
rates for quicker transmission.  
  

Make Angle of 
View 

Resolution Frame Rate Price 
($USD) 

Raspberry Pi Camera 
Module v2 

62 x 48 3240 x 2464 15 $25 

Pixy CMUcam5 Image 
Sensor 

75 x 47 1280 x 800 25 $68 

Logitech HD Pro Webcam 
C920 

70 x 43 1920 x 1080 30 $58 

 Table 3.2: Comparison of vision sensors 
 
 

3.3.3. Thermal Camera 
 
The main target we seek to detect in the battles will be our opponents robots. One of 
the reasons why it will be a difficult task to do this is that there will be other objects on 
the course to distinguish them from. A key difference between the robots and those 
other objects though are that they will be composed of electrical devices. These 
electrical devices will radiate infrared light or produce thermal energy that would 
otherwise go undetected by the human eye or any visible light camera. Infrared or 
thermal imaging camera sensors could make use of this detail and provide an 
advantage to the detection algorithm.  
 
The problem with using thermal cameras in our design are that there are few options 
available to us due to their expensive cost. The thermal cameras that we could afford 
are compared in Table 3.3. 
 

Sensor  FLiR Dev Kit  Seek Compact 

Resolution 80 x 60 206 x 156 

Field of View 51 ° (Horizontal); 63.5 ° 
(Diagonal) 

36 ° (Horizontal) 

Wavelength Band 8 to 14 microns 7.5 to 14 microns 

Temperature Range -4°F to 248°F 40° F to 626° F 
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Connectivity I2C (SPI) Micro USB 

Platform 
Compatibility 

Raspberry Pi, Arduino, ARM Android 

Price $259.95 $250 

 Table 3.3: Comparison between FliR Dev Kit and Seek Compact thermal sensors 
 

After analyzing the specifications, there were different tradeoffs we would make in 
selecting one the similarly priced thermal sensors. The Seek Compact offers a higher 
resolution than the FLiR, but at a smaller field of view. A higher resolution would give 
the software more pixels to detect an object, which would be crucial at longer distances. 
A wide field of view would be preferable since our idea is to align the thermal sensor 
with the view of our visible-light camera. The temperature range of the Seek Compact is 
larger than the FLiR’s, but its floor detection temperature of 40° F could be too high to 
be useful. A disadvantage of the Seek Compact is that it's built to operate on the 
Android operating system which would limit our platform choices.  

 

3.3.4. Encoder 
 
A dilemma in having a specified course size and designated zone is preventing the 
robot from overstepping its boundary. Constantly capturing where the robot’s position is 
within its boundary can be used to prevent user fault (e.g. the user remote controlling 
the robot goes in the wrong direction and leaves its zone resulting in a deduction of 
points). Limitations could be set to lock a motion that would cause the robot to leave its 
zone if it is at close quarters with the border. 
 
One idea of keeping tracking of the robot’s relative position on the field was to check 
when the remote control was active and using trial and error to approximate how far the 
robot has traveled in relevance to the direction the user has input and the size of the 
circumference of the wheels. This would take a great deal of time and most likely end 
with very inaccurate results.  
 
But as it turns out, technology already exists to simplify this method of tracking - 
encoders.  
 
An encoder is a sensor that can be attached to the wheels of the robot to track the 
rotation of the wheels. It converts an electronic signal into a digital signal that can then 
be sent back to software algorithms to maintain a relative position of the robot on the 
course. Given the size of the wheels it is possible to determine how far the robot has 
traveled and even how fast it is going. 
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There are several different types of encoder systems, all with varying amounts of 
accuracy and pricing.  
 
For project cost savings, in order to stay within our budget limitations, it was recognized 
that there exists package deals of gear motors that each include encoders. A majority of 
the gear motors on the market tended to robotics include encoders that use the hall 
effect; rotational changes are tracked by a change in voltage invoked by a change in 
magnetic field by the magnets attached in the encoder system. 
 
While these budget encoders are not very accurate for robotic systems that rotate 
constantly at high speeds (e.g. an autonomous label attaching system for bottles of 
soda), it is estimated that they will work fine for the purposes of an autonomous robot 
constrained to roughly a 300 square foot course zone. This is because it is predicted 
that the robot will not be moving all that much to reduce strain on the firing mechanism 
and processing unit. The more the robot moves the more inaccurate the tracking system 
could become. If rotational precision accuracy is off by even a millimeter than the more 
the wheel rotates the more inaccurate data adds up. To clarify, if one millimeter of 
distance is lost per rotation than after 150 wheel rotations it is entirely possible to have 
lost about half a foot of distance in positioning data.  
 
As long as manual remote controlled movement of the robot is limited, low-budget 
encoders will suffice for the recording of its position relative to its restricted zone 
boundaries. 

 
3.4. Microcontrollers 
 
The microcontroller will be used to connect the electrical subsystems together. It will 
read from the sensors and send their data to the main computer for processing. As 
targets are detected, the main computer will supply the microcontroller with their 
coordinates. These coordinates will be translated into the movements of the stepper 
motors to aim the weapons, or the servo motor to keep the tracked object in the view of 
the camera. It will also be in charge of controlling the gear motors that will drive the 
robot.  
 
Due to the immense popularity and support available for the Arduino boards, we have 
focused our search on microcontrollers available with this platform. A list of potential 
microcontrollers can be seen in below Table 3.4. This will provide us with a lot of 
resources and software libraries to speed up our development. 
  
Arduino Software is the integrated development environment provided by Arduino that 
we will use to program the microcontroller. It runs on the most popular operating 
systems such as Microsoft Windows, Mac OSX, and Linux. It is based on the 
Processing programming language which builds on Java, but it also supports the 
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languages C and C++. This was important to us as the group is familiar with them, and 
have experience programming embedded systems. 
 

Development 
Board 

Arduino Due Arduino MEGA 
2560 

Arduino UNO 

Microcontroller AT91SAM3X8E ATmega2560 ATmega328P 

Architecture 32-bit ARM 8-bit AVR 8-bit AVR 

Clock Frequency 84 MHz 16 MHz 16 MHz 

Max Operating 
Voltage 

3.3 5 5 

Flash Memory 512 KB 256 KB 32 KB 

SRAM 96 KB 8 KB 2 KB 

GPIO pin count 54 54 14 

Price $40.99 $36.99 $22.39 

Table 3.4: Comparison of microcontrollers 

 
Arduino Due is the most powerful microcontroller of the three. It has the fastest clock, 
most flash memory, most SRAM, and GPIO pins. It can dish out more power than other 
two microcontrollers as well. It can output both 3.3V and 5V at 800mA. The Arduino 
MEGA 2560 and the Arduino Uno cannot match this. All the Arduinos come preloaded 
with bootloaders that makes them ready to download new code.  
 
One important detail that cannot be seen in the specifications of the microcontrollers are 
their popularity. The Arduino Uno is the most widely used Arduino, and therefore there 
are the most documented.  
 

3.5. Microprocessors 
 
The main objective of our robot is to autonomously detect targets. The team plans on 
accomplishing this by applying several computer vision techniques such as object 
detection, facial recognition, and motion tracking, which are known to be 
computationally expensive. Even a system dedicated to solving one of those tasks, 
requires a high amount of power to perform.  
  
From researching similar projects, we realized we would need a device more powerful 
than a microcontroller to do this amount of processing. In fact, the most common setups 
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of these systems were on desktop computers with multi-core processors, Gigabytes of 
RAM, with 64-bit Operating Systems. These kinds of conditions are needed because 
these algorithms are fighting to work in real-time. The computer we chose would need 
to be of a similar mold as those desktops. 
  
In order for it to be useful, to us it would also need to run an operating system 
compatible with OpenCV to call the vision algorithms. That leaves us with machines that 
either run Linux, Windows, or Macintosh. Since we are looking for single-board 
computers we are mostly left with a system running on Linux.  
  
The power requirements of the machine are also relevant. Each battle will last about 10 
minutes, and many components will be drawing power from the battery. Most of the 
single-board computers we found ran on 5V and 2A.  
  
Below, in Tables 3.5-3.8, are the different options we found: 
 
 

Name Banana Pi Pro Computer Board BPI-M1 

Price $37.50 

OS Raspbian, Android, ArchLinux 

CPU ARM cortex-A7 dual-core CPU @ 1.0GHz 

GPU ARM Mali400MP2 

RAM SDRAM: 1GB DDR3 (shared with GPU) 

Storage 4GB 8-bit eMMC on-board flash storage 

USB 2 x USB 2.0 ports 

Power 5V, 2A  

Size Size: (L x W x H): 92.00mm x 60.00mm x 0.00 mm 

Weight 48g 

Table 3.5: Banana Pi Pro specifications 
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Name ODROID-C2 

Price $40 

OS Ubuntu, Android, ARCHLinux, Debian 

CPU Amlogic ARM® Cortex®-A53(ARMv8) 1.5Ghz Quad Core CPU 

GPU Mali™-450 GPU (3 Pixel-processors + 2 Vertex shader processors) 

RAM 2Gbyte DDR3 SDRAM 

Storage eMMC5.0 HS400 Flash Storage slot, UHS-1 SDR50 MicroSD Card slot 

USB 4 x USB 2.0 ports 

Power 5V, 2A 

Size 85 x 56 mm (3.35 x 2.2 inch) 

 Table 3.6: ODROID-C2 specifications 
 
 

Name Raspberry Pi 3 Model B 

Price $39.95 

OS Raspbian 

CPU Broadcom BCM2837 64Bit ARM Cortex-A53 Quad Core 1.2GHz 

GPU Broadcom VideoCore IV 

RAM 1GB LPDDR2 (900 MHz) 

Storage MicroSD 

USB 4x USB 2.0 Ports 

Power 2.5A @ 5V 

Size 85.60 mm × 56.5 mm (3.370 in × 2.224 in) 

Weight 45g 

Table 3.7: Raspberry Pi 3 Model B specifications 
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Name NVIDIA Jetson TK1 Development Kit 

Price $192.99 

OS Linux for Tegra 

CPU NVIDIA 4-Plus-1 Quad Core ARM Cortex A15 @ 2.3GHz 

GPU NVIDIA Kepler GPU with 192 CUDA cores 

RAM 2GB 64bit 

Storage 16GB 4.51 eMMC 

USB 1 x USB 3.0 port, 1 x USB 2.0 micro-ab socket 

Power 4.8A @ 12V 

Size 133mm x 133mm x 30mm (5.2in x 5.2in x 1.18in) 

Weight 120g 

 Table 3.8: NVIDIA Jetson TK1 specifications 
 
After collecting a group of options at single-board computer we were able to compare 
them over a few metrics. Computational power was a top priority for our robot so we 
started there. In terms of CPU clock speed, the boards were very competitive. The 
Nvidia Jetson TK1 had the fastest CPU by a wide margin, with its Nvidia ARM Cortex 
A15 quad-core clocking in at 2.3GHz. The next best CPU was found on the ODROID 
C2 with its ARM Cortex A53 quad core running at a solid 1.5GHz. The Raspberry Pi 3 
and Banana Pi CPU’s were slightly slower.  The NVIDIA Jetson also provided additional 
computational power with its GPU containing 192 CUDA cores. Our system could 
absolutely be benefitted by this type of GPU as there are OpenCV libraries optimized for 
CUDA. Both the Odroid C2 and the Nvidia Jetson had the most RAM, with 2GB of it on 
each.  
 
After examining the options based on their hardware specifications we looked to gain 
more insights to their performances. Here we will show difference benchmarks we found 
performed by Michael Larabel, the founder of a company named Photonix Media, which 
analyzes and tests the performance of Linux hardware. 
 
The C-Ray v1.1 and Smallpt V1.0 are good tests to predict image processing speeds 
because they respectively test floating point calculation and image rendering. The 
results of the test are seen in Figure 3.3 and Figure 3.5. The Raspberry Pi 3 beat out its 
entire competition in both test, except for the Nvidia Jetsons. John The Ripper v1.8.0, 
Figure 3.4, is a password cracking test, and the Raspberry Pi 3 beat out all its 
competition minus the Jetson TX1. Then the last figure, Figure 3.6, a general 
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performance per dollar metric which showed the Raspberry Pi 3 beating out all the 
competition.  
 

 
Figure 3.3: C-Ray Benchmark 

(Permission Granted by Photonix) 
  

 
Figure 3.4: John The Ripper Benchmark 

(Permission Granted by Photonix) 
 

 

 

 
Figure 3.5: Smallpt v1.0 Benchmark 
(Permission Granted by Photonix) 

 

 
Figure 3.6: Performance Per Dollar 
(Permission Granted by Photonix) 

  

3.6. Memory 
 
Images, when converted into a readable format by memory (bits and bytes), take up a 
large amount of memory, or RAM (Random-access memory). The problem is that there 
are a lot of different image resolutions (640x480, 1280x720, etc.) and image formats 
available (JPEG, PNG, TIFF, RAW, etc.) and each resolution and format varies in the 
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amount of data they take up. There are a number of different combinations to use and it 
is unknown at this time which settings will be applied.  
 
Take, for example, an image that is 128x128 pixels. A general rule of thumb for 
estimating the total memory consumption of an image is to multiply the pixel width and 
height of the image by four bytes to get the number of bytes. For this image, the 
memory consumption would be upwards of 0.06 megabytes after conversion from 
bytes. This image is very small compared to what is expected for this project and it must 
also be taken into consideration that this is just one image. It is highly improbable that a 
computer vision algorithm would be able to accurately recognize an object that is more 
than 20 feet away from an image that is 128x128 pixels. Figure 3.7 visually 
demonstrates just how big a 128x128 pixel image really is. 
 

 
Figure 3.7: An example of a 128x128 pixel image 

(Team Designed) 
 
Assume now, that the quality of the camera that will be used for the detection of objects 
farther than 20 feet will stand at roughly eight megapixels - which is about eight million 
pixels. The memory consumption for an image of this size starts at about 30 megabytes. 
If the camera is recording at a rate of 30 frames per second than it can be expected that 
at least 900 megabytes (30 frames x 30 megabytes/frame) of memory will be necessary 
for memory transfer (depending on how the frames are transferred - in this example all 
30 frames are assumed to be transferring at once).   
 
Accounting for all other processes a device must use memory for (e.g. the operating 
system, system services, etc.), it would be of best interest to choose a device that has 1 
gigabyte or more of memory. The more memory in the system the more room for early 
development testing before optimization and avoidance of system crashes from 
possible memory exhaustion. Any less than 1 gigabyte of memory and it is unclear how 
stable the system will remain at the example rate above. Quality of the images 
produced by the camera will have to be sacrificed in order to fit the limitations set by a 
memory amount less than 1 gigabyte. 
 

3.7. Operating Systems 
 
The operating system chosen to run on the main processing unit is Raspbian Jessie. 
Raspbian is a Debian-based distribution of Linux. It is the officially supported operating 
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system of the Raspberry Pi, therefore it will help use its computing resources to their 
potential. It comes with Python 2 and Python 3 preinstalled, therefore there will not be 
any problems porting our code to the Raspberry Pi. Afterwards, it is a very straight 
forward process to install OpenCV Python bindings.  Another reason why Raspbian 
Jessie is right for the Raspberry Pi is that the Arduino IDE is available for it. This is very 
important as without it there would not be a way of the Raspberry Pi and Arduino 
microcontroller to communicate with each other.  
 
ROS (Robot Operating System) is a software platform designed to make robotics 
software more manageable. It is not a desktop Operating System but it runs on one. It 
contains libraries of code commonly used by robots such as to interface with hardware, 
and software like OpenCV or Point Cloud Library. 
  
 ROS simply makes the integration of a system of components easier to handle. It uses 
a publish/subscribe model to enable message passing through what are known as 
nodes. Nodes can be a computer, or any electrical device end point. 
  
ROS is compatible with Linux, Mac OSX, and Windows. It can be run on the Raspberry 
Pi, and can integrate it with the Arduino.  
 
After design choices we decided to use the nvidia Jetson TK1. The Jetson TK1 on this 
battlebot is compiled with an NVIDIA package called Jetpack 2.3.1 which contains an 
optimized linux operating system named L4T - Linux for Tegra and several other 
software packages essential to computer vision such as OpenCV, CUDA, and 
VisionWorks.  
 
OpenCV and VisionWorks contain library packages that were imported and 
reconstructed upon for computer vision algorithms.  CUDA is the platform that NVIDIA 
sources to its users to enable the usage of the onboard GPUs and work in conjunction 
with OpenCV and VisionWorks. 
 
This robot runs L4T version R21.5 and was recompiled using kernel source code 
provided by NVIDIA to customize the kernel and  allow for Bluetooth serial 
communication and a wireless connection using an AC-7260HMW mini-PCIe wifi card 
and coupled antennas.   
 
Scripting was created to configure the Jetson on each boot to maximize usage of the 
onboard CPU’s and GPU’s in order to reduce workload and unlock the full performance 
potential that NVIDIA supplies. 
 
The operating system is very sensitive as most of the setup is done via terminal 
command line, leaving plenty of room for malfunction if configured incorrectly. 
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3.8. Motors 
 
This section of research focuses on the motors that will be used for this project. In order 
for our robot to able to move and transport itself around a field of interest, motors will be 
required. There are several motors needed in order to make the robot functional. The 
robot will need DC motors to transport itself in any direction by means of manual 
navigation. The robot will also need a stepper motor to turn the turret in order to 
properly aim the Nerf-blaster at a target location. Finally, the robot will require a servo 
motor to position the camera to visualize the field of interest. In the upcoming sections 
will discuss these different types of motors and provide background and product 
comparisons that will be served for this project. 
 

3.8.1. Brushed DC Motor 
 
The most important factor in choosing the right motor is knowing the weight load of the 
robot and the diameter of the wheels. A brushed DC motor is designed to be able to 
convert a direct current power source into a mechanical energy.  Since brushed DC 
motors can supply up to four times its torque value without stalling, it would be the ideal 
choice for driving the robot.  
 

3.8.1.1. CIM Motor 
 
CIM motors will be used in a set of four to drive the wheels of the robot. In Table 3.9 
shows a comparison among different DC brushed motors and their specifications.  
 

Name Voltage(V) No load 
RPM 

Free 
Current 
(A) 

Max 
Power 
(W) 

Stall 
Torque 
(N-cm) 

Stall 
Current(A) 

2.5” CIM 
Motor 

12 5310 2.7  337 2.42 133 

9015 Motor 12 16000 1.2 179 428 63.8 

Banebot 
RS- 540 
Motor 

4.5-12 16800 1 - 278.8 42 

 NeveRest 
40 
Gearmotor 

12 6600 1.2 138 396 11.5 

Table 3.9: Comparison of CIM motors 
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3.8.2. Servo Motor 
 
The camera that will act as the eyes for the robot will need to be able to stay fixed on 
the targets it is detecting while the robot is in drive mode. A servo motor will be used to 
allow the camera to rotate independently as the robot moves. These motors are the 
best fit for keeping a camera in a fixed location because they provide precise angular or 
linear position. It uses a closed-loop servomechanism that can provide position 
feedback to its initial and final position. The only cons to servo motors is they tend to 
draw a lot of current so choosing the right battery power will have to be taken in 
consideration. Table 3.10 contains comparisons to servo motors that will be considered 
for the project. 
 

Name Size (mm) Speed Torque Connection 

Futaba S3004 
Standard Servo 
Moto 

41x30x36 0.19 
sec/60o 
at 6V  

4.1 Kg-cm at 6V Standard J-type 
connector 

HS-422 Servo 
Motor 

41x20x37 0.16 
sec/60o 

4.1/5 Standard J-type 
connector 

Table 3.10: Comparison of Servo motors 
 

3.8.3. Brushless DC Motor 
 
Lastly, a brushless DC motor will be needed to turn the Nerf-blaster to target location. 
Brushless motors are highly considered since positioning the Nerf-blaster will need an 
accurate location and are normally controlled by a computer processing. They can also 
rotate in an equal number of steps. Since our Nerf-blasters will not exceed more than 5 
pounds, a stepper motor with minimum standard torque can be used. A comparison of 
Brushless DC Motors is seen below in Table 3.11. 
 

Name Size Voltage/Current Holding Torque Step Angle 

ROB-09238 48x42mm 12V/0.33A 2.3kg*cm 1.8 

RB-Spa-983 48x42mm 3V/1.7A 48N*cm 0.9 

Table 3.11: Comparison of Brushless DC Motors 
 

3.9. Autonomous Detection 
 
The central task of this project is for the robot to autonomously detect and attack its 
targets. This will be a challenge because there will be a lot of unknowns it will have to 
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overcome. The robot will be placed in a course we have never seen before. It will need 
to shoot at the opponent’s robot which we will not have a visual description of 
beforehand. And there will be course obstacles in the way which the robot will not be 
allowed past, and thus will hide and occlude the targets. Those are some of the 
unknowns that will pose a challenge and it will also need to attack stationary course 
targets, which are going to be large pictures of faces mounted on easels about two feet 
high. 
 
Due to the complexity of these problems the team has decided to use a set of computer 
vision techniques to solve them. Computer vision is an interdisciplinary field that is 
concerned with the automatic extraction, analysis, and understanding of useful 
information from digital images and videos. Computer vision is a field closely related to 
Artificial Intelligence and has applications in agriculture, autonomous vehicles, 
forensics, robotics, security and surveillance, and the list goes on. Common 
subdomains of computer vision include scene reconstruction, event detection, object 
recognition, motion tracking, and facial detection. 
 

3.9.1. Computer Vision Software Frameworks  
 
It has been decided that computer vision would be our robot’s main means of 
automated target detection, but we do not intend to reinvent the wheel as developing a 
computer vision algorithm could be its own entire project. Therefore, our next job is to 
select a vision software framework with as many functions we need implemented. In this 
section we will look at the different options that we came across.  
 

3.9.1.1. OpenCV  
 
OpenCV (Open Source Computer Vision) is a library of programming functions used for 
both computer vision and machine learning. OpenCV was officially launched in 1999, as 
a research initiative by Intel Corporation. It contains more than 2500 optimized 
algorithms used for facial detection, identifying objects, tracking camera movements, 
stereo vision, and more. OpenCV has a large community with thousands of users, and 
downloads of it in the millions. It is written in C and C++, but it also has programming 
interfaces available for Java and Python. It supports several platforms such as 
Windows, Linux, Android, and Macintosh. It is BSD-licensed product which makes the 
code available for businesses and organizations to use and modify at will.  
 

3.9.1.2. LTI-Lib  
 
LTI lib is an object oriented library in C++ with algorithms and data structures commonly 
used in computer vision. It has been developed by the department of Computer Science 
at Aachen University in Germany, as a part of many research projects with robotics, 
object recognition, and gesture recognition. It was built using GCC under Linux, and 
Visual C++ under Windows NT. It contains over 300 classes dealing with linear algebra, 
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classification, visualization tools, and image processing. The system requirements to 
use LTI-Lib are Windows NT with MS Visual C++ .NET 2003, or a Linux distribution with 
GCC 3.1 or later. LTI-Lib is an open source software available under the terms of the 
BSD License.  
 

3.9.1.3. MatLab  
 
Matlab is a multi-paradigm numerical computing environment and programming 
language developed by MathWorks. It is a family of products with toolboxes ready 
available for many applications such as control systems, physics modeling, image 
processing and computer vision. The image processing and computer vision packages 
provide functions such as feature detection, object detection, motion estimation, and 3D 
point cloud processing. Matlab is known to be easy to use with its own programming 
language which was written in C, C++, and Java. It supports Windows, Linux, and 
Macintosh. Matlab is not free, an individual license for the Computer Vision System 
toolbox costs $1,350.  
 

3.9.1.4. VXL  
 
VXL (the Vision-something-Libraries) is a multi-platform collection of C++ software 
libraries for Computer Vision and Image Understanding. It was created by extracting the 
core functionalities of two large systems: the Image Understanding Environment (IUE) 
and Target Junior (TargetJr) with the purpose of making a light, fast and consistent 
system. VXL is written in ANSI/ISO C++ and is designed to be portable over many 
platforms such as Windows, Linux, and Macintosh OS. As well as the core libraries, 
there are libraries covering numerical algorithms, image processing, coordinate 
systems, camera geometry, stereo, video manipulation, structure recovery from motion, 
probability modelling, classification, feature tracking, topology, structure manipulation, 
3D imaging, and more.  
 

3.9.1.5. Framework Comparison 
 
After researching vision software framework for our project there we had to consider 
before making a decision. Right off the bat we had to eliminate Matlab from contention 
because of its licensing cost. It is a shame we could not use it, since it is indeed state of 
the art technology with loads of functionality and is raved by professionals in the 
industry.  
 
We were pleased to find that the other options were available in C and C++, as that 
would facilitate the portability of the software between our development environment 
and robotic platform.  
 
An important factor we needed to investigate was the performance of these vision 
libraries. We came across a benchmark produced in the book titled “Learning OpenCV” 
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published by O’Reilly, seen in Figure 3.8. It compares OpenCV to LTI, VXL, and 
OpenCV with IPP using four different performance benchmarks. IPP or Intel IPP is a 
package of optimizations to functions of OpenCV running on a set of Intel x86 and x64 
platforms with Intel® Integrated Performance Primitives.  
 

 
Figure 3.8: Benchmark of different vision libraries  

(Permission Requested from O’Reily) 
 
As seen in Figure 3.8, in all the tests performed, OpenCV outperformed both VXL and 
LTI. The biggest differences in performance were seen in the image resize tests where 
OpenCV was close to 24 times faster than the next runner up, VXL. The optical flow test 
is also important to us making our decision because it relates to motion tracking, and 
there the results were a lot closer. Still OpenCV was almost twice as fast as the next 
runner up, LTI.  
 
One of the most important factors when choosing a software framework is its 
documentation. All the frameworks provided comprehensive documentation on their 
websites, but we found OpenCV’s to be the most elaborative. Their documentation 
includes class definitions as well as examples of programs showing how to use the 
most common procedures.  
 
All things considered, OpenCV will be our choice of vision framework. It offers the 
largest collection of optimized vision algorithms in one package. It is compatible with the 
on board processing units we considered. It is programmable in the Python language 
which our team prefers due to its ease of learning and in-built data structures and 
functions. We have read parts of the documentation available for OpenCV, and found it 
very useful. Tutorials are available on OpenCV’s website, in books by different 
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publishers, and videos online that will make the development process less troubling in 
case we encounter any problems.   

 
3.9.2. Object Recognition 
 
A major area of object recognition are what are called feature-based detection 
techniques. There is no exact definition of what constitutes a feature, but they are 
“interesting” parts of images used to describe their contents. There are many types of 
features in computer vision algorithms, and their practicality depends on the application. 
Generally, though, good features can be consistently found over different images of the 
same scene, are robust to transformations such as rotation and translation, are 
insensitive to noise, and are salient. Due to the complexity of the battlebot contests it is 
crucial to combine the detection of different types of features into our target detection 
pipeline. Here I will outline different feature based algorithms. 
 

3.9.2.1. Edge Detection  
 
Edge detection algorithms use a set of mathematical methods to find points in images 
where there are sharp changes in the intensity of a neighborhood of pixels, called 
edges. Edges are important features as they typically occur on the boundary between 
two different regions in an image. This helps determine the shape of objects in a frame, 
and also highlights a region worth looking at. 
  
One of the most prominent edge detectors is the Canny algorithm. It uses a 2D 
Gaussian filter to smooth and blur the image which results in accurate edge detection. 
Another advantage is that it is adaptive to the distribution of intensity values present in 
image with hysteresis thresholding. Other edge detection algorithms use one threshold 
to decide whether a pixel makes a strong edge candidate. If a possible edge has a 
value equal to or greater than the value preset by this threshold, then it is set as an 
edge. Hysteresis thresholding uses two thresholds, one high and one low. If an edge is 
above the high threshold it is passed on as an edge. But if an edge is higher than the 
low threshold and adjacent to a high threshold then it is also passed as edge. This 
technique helps find edges that are not very visible but correspond to the outlining 
contour of an object. 
 

3.9.2.2. Hough Transform 
  
Hough transform is a technique that builds upon the results of an edge detector to help 
recognize shapes. Edge detection algorithms will find a series of edges which can then 
be linked together to form contours. If there are occlusions of the objects, then the 
edges will not be linked. Hough transform is used to detect lines and circles using these 
individual edge points. 
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Hough transform begins by modeling the lines that could pass through an edge. Doing 
this for all edges, it will then find the points where these lines intersect. Using a voting 
technique that counts the intersections and a preset threshold, it will determine where 
the most likely lines are found. A similar procedure can be done to detect circles in edge 
maps.  
 
This procedure would provide a more revealing set of characteristics of the objects 
encountered. This can help in the detection of the opposing robot’s structure, the 
boundaries of the course which will be clearly marked lines, the shape of the obstacles 
in the keepout zone, and the mounting of the stationary course targets. It is also 
important to note that it is a procedure that can be done real-time, and concurrently with 
other processes.  
 

3.9.2.3. Blob Detection 
 
Another class of feature-based detection we can make use of is blob detection. A blob 
detection algorithm searches images for regions of a similar color or property. We will 
not know what the opponent's robot will look like, but by detecting blobs we will find 
areas of high contrast between objects and a background and objects.  
 
Blob detectors can be simple to program. OpenCV provides function call 
SimpleBlobDetector to search for different types of blobs. Blobs can be searched by 
color, or by area coverage in pixels. Blobs can also be searched by shape. This blob 
detector can find concave or convex shaped blobs. It can also find lines, ellipses, and 
circles.  
 
This could be a very easy way of detecting our targets, but it will definitely take a lot of 
tweaking to provide reliable results. 
 

3.9.3. Motion Detection 
 
Potentially one of the biggest considerations for this project is the idea of using motion 
detection in order to autonomously track, aim, and fire at an enemy robot or medic. 
Utilizing computer vision techniques, motion detection will allow for tracking of moving 
objects through the use of two sensor modalities chosen for this project, a camera and a 
rangefinder. Since the only objects that will be in motion within the frame will be targets, 
it is safe to assume that every moving target can be shot at accordingly.   
 
Although motion detection provides key advantages to the possibilities of solving the 
proposed system’s problem, environment conditions as well as the fact that the robot 
itself will be in motion are all things to consider before choosing motion detection as a 
solution to this project. Since the field will be in an indoor environment, it is likely that 
the objects within the room will be clearly distinguishable from the rest of the 
environment. Knowing that the team robot will be mobile presents a more challenging 



 

36 
 

problem to effectively track enemy moving targets. This creates two independent 
motions that must be considered; these motions are named the ego-motion of the team 
robot and the external motion of the targets. This processing of both motion algorithms 
must be done in real time in order to effectively shoot at the desired target. 
 
Source [32] provides a detailed explanation as to how the ego-motion algorithm can be 
used in accordance with a mobile robot in order to detect moving objects. As a 
summary, ego-motion is considered a coordinate conversion procedure that computes a 
transformation. It is important to eliminate the ego-motion from the image in order to 
take into account the real position of an object in motion. This allows for more accurate 
motion detection and prevents errors of stationary objects being labeled as moving 
objects. If motion detection is a plausible solution that is chosen, it will be imperative to 
consider ego-motion, as the designed robot shall be in motion throughout the length of 
the competition. 
 
Another thing to consider when using motion detection for real time tracking is that 
noise can be present during processing. Noise handling algorithms can be a solution to 
prevent unnecessary intervention and miscalculation with the motion detection 
algorithm. Ideally, the noise handling algorithm can be used as a secondary processing 
method. For example, with the high possibility that a monocular camera will be used in 
this project, there is a chance some objects may have noise on certain boundaries since 
there is a lack of depth. One way to solve this problem, as discussed in source [32], is 
to estimate the position and velocity of the moving object. 
 
The rangefinder utilized in this project will provide the system with further information in 
order to implement motion detection effectively. Combining both the camera and the 
laser rangefinder, a projection of the rangefinder can be used onto the current image 
position. The rangefinder then can allow for some 3D positioning information that can be 
beneficial in effectively tracking the moving targets within the robot's’ line of sight. 
Allowing for more depth information can ultimately lead to further accuracy of the 
proposed system.  
 

3.9.5. Range Detection 
 
Range detectors work by a simple system of send and receive. A signal is sent out in 
the direction of the object in question. Once this signal hits the object it bounces back 
and returns to the source it was emitted from. The calculations are then processed 
depending on the type of signal that was sent out in order to determine how far the 
object is. 
 
Take laser rangefinders for example. They work by pointing a laser at an object and 
waiting for the laser’s reflection to bounce back. Lasers travel just as any light does - by 
the speed of light. Therefore, since the speed of light is constant, distance can be 
determined by multiplying the speed of light by half of the round trip time (otherwise 
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known as Time of Flight) of the laser. The formula for calculating the distance as a 
mathematical expression is: 
 

Speed of Light (m/s) X ½ Time of Flight (s) = Distance (m) 
 

Ultrasonic rangefinders work in a very similar fashion to laser rangefinders. A high 
frequency sound is emitted towards an object of interest and the time it takes for the 
sound to return is recorded. Fortunately, sound also travels at a constant speed so long 
as the air is dry. The same formula applies, albeit replacing the speed of light with the 
speed of sound. The formula for calculating the distance as a mathematical expression 
is: 
 

Speed of Sound (m/s) X ½ Time of Flight (s) = Distance (m) 
 

3.9.6. Stereo Vision 
 
This section will highlight the capabilities of a stereo vision and break down the process 
of how stereo vision operates. Stereo vision may be beneficial in this project by giving 
further capabilities to 3D image processing. Stereo vision also has the capability of 
being integrated with SLAM as discussed in section 3.2.1. A list of stereo vision 
cameras will also be listed to give some examples as to what sensors may be 
compatible with the proposed system. 
 
Stereo vision consists of two or more cameras; these cameras allow extraction of 3D 
information from digital images. By having two cameras, the ability to infer depth by 
triangulation becomes a possibility. This is possible by finding corresponding points in 
the two images. 
 
In order to successfully explain how stereo vision works, variables will be defined. If one 
considers two points, P and Q, that are within the same line of sight as the image R, the 
planes will project onto the same image plane. Being able to narrow the search space 
for corresponding points from 2D to 1D, these corresponding points can be placed on 
the same image scanline. This is known as standard form. Standard form allows for 
“perfectly” aligned corresponding points with the same focal length. 
 
Stereo vision uses disparity and depth in order to successfully process 3D information. 
Disparity is calculated with the use of similar triangles; in reference to the two 
corresponding points, it is the difference between the x coordinate. As points are closer 
to the camera, the disparity increases. Depth can be broken down into a certain amount 
of parallel planes which corresponds to each disparity value. The depth them makes up 
the range field otherwise known as horopter. 
 
A stereo vision system consists of four main parts; calibration, rectification, stereo 
correspondence, and triangulation. Calibration includes both intrinsic and extrinsic 
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parameters such as focal length, image center, and alignment of the two cameras. 
Rectification uses the calibration in order to remove any lens distortion and also makes 
sure the stereo images are in standard form. Stereo correspondence attempts to find 
homologous points if they exist in the two images. Finally, triangulation is the calculation 
of the correspondence discussed earlier. Each of these parts are crucial for successful 
implementation of a stereo vision system. 
 
An analogy that aids in further understanding of the concept behind stereo vision is 
similarity to human vision. Just as an individual has two eyes, stereo vision uses two 
cameras in order to portray a 3D depiction of an environment. In the human body, each 
eye has a slightly different view of the same environment. With stereo vision, each 
camera has a slightly different view by capturing an image of the environment at the 
same time Using geometric properties, a successful 3D picture can be developed from 
these two images. 
 
Stereo vision has some key advantages that make using the system more appealing for 
any robot project that may need 3D information. Stereo vision is a both effective and 
reliable approach that allows a more practical approach to tracking and detecting 
objects. Also, it is a passive sensor, meaning that a stereo vision sensor cannot be 
affected by the environment. Its ability to extract information such as dimensions and 
color adds to its usefulness in robotic systems. 
 
There are also some issues that may arise while implementing a stereo vision system. 
One of which is the possibility of distortion and noise in an image. If distortion or noise is 
present in an image, it may be hard to render a 3D representation of the images. 
Specular surfaces can also cause an issue with stereo vision systems considering the 
reflective surface will diminish its actual appearance in 3D rendering. Thankfully, in this 
project, the use of reflective surfaces is forbidden, so there is less concern about this 
issue. Foreshortening, ambiguous regions, and perspective distortions are also some 
issues that can occur. 
 
Stereo vision cameras are outlined below in Table 3.12. Table 3.12 includes different 
price points, different capabilities, as well as key specifications to look for while 
comparing these cameras for this project. Some things to consider while choosing a 
camera for this project is how many frames per second are necessary to complete the 
objective, keeping in mind that focal length will be constantly changing, and how to 
connect this camera to corresponding components. As Kinect is one of the top sensor 
choices for this project, it has been written about separately in its own section 
(reference 3.3.2.3). Prices of stereo cameras are very high for the desired budget, 
comparing prices is key. 
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Name/Option Price 
($USD) 

FPS Resolution Pros/Cons 

Kinect 3D 
$132.04 30 1280x960  

Great camera for budget. 
Compatibility may be an issue. 

BlackBird 2 3D 
FPV Camera 
  

$179.00 60 680x512 
Has great reviews; most 
expensive camera choice; very 
high up on $1000 build budget. 

NerdCam3D Mk.2 
Stereoscopic FPV 
3D Flight Camera  

$149.99 N/A 640x480 

Cannot find exact frame rate for 
product. Product reviews are not 
found; hard to gauge 
performance. 

BlackBird 1 3D 
FPV Camera 

$89.00 30 656 x 492 

Decent camera for the price. 
Older model of the BlackBird 2. 
Kinect 3D is not much more for 
a much higher resolution. 

Table 3.12: Comparison of Stereo Vision cameras within budget 
 

3.9.7. Facial Detection 
 
Perhaps the easiest target to detect will be the stationary targets. This is because apart 
from taking advantage of the fact they are stationary and that their location on the 
course will be known, we are told they will be pictures of faces. This is an enormous 
detail because to detect faces we can use one of computer visions best work, facial 
detection. 
  
Facial detection is perhaps the most reliable target detection we will have. The reason is 
that there happen to be machine learning programs trained for this purpose. Machine 
learning algorithms or classifiers use what are called training sets, to learn the best 
distinguishing features found in objects you label. Essentially you feed the classifier a 
dataset composed of pictures with faces and pictures without faces. You teach the 
algorithm what the pictures contain and the algorithm determines a model that predicts 
what a new test image contains. Machine learning algorithms can have very high 
accuracy rates, but they require large datasets with hundreds of training images. Since 
we will not acquire any images of the other team’s robots or the obstacles on course 
there will be no way of training an algorithm to detect them. 
  
The Haar Feature-Based Cascade classifier is one widely known method of facial 
detection. This face-detection algorithm is already implemented in OpenCV. It is 
believed to be a reasonable solution because it will not require the collection of a 
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dataset or training of a classifier. It is ready to use with a few lines of code and can 
perform in real-time.   
  
In the end, facial detection is only one part to our target detection pipeline. It will be 
processed concurrently with the other detection algorithms. The detection of faces will 
give us a form of receiving points, and orienting the robot on the course.  
 

3.9.8. Histogram Equalization  
 
There are many potential downfalls to computer vision techniques. One possible 
problem we may encounter is with the brightness of the lighting at the course. It is 
probable that the lighting at the competition will be different to the conditions we develop 
and test under. This could change the outcome of our vision algorithms as they depend 
on the intensity of pixels to calculate their procedures. 
  
We cannot change the circumstances of the course, but we can try image processing 
techniques such as histogram equalization to correct them.  A histogram is a method of 
counting the pixel intensities found in image. Histogram equalization attempts to flatten 
or even the distribution of pixel intensities to increase contrast.  
 
As seen in the first image, Figure 3.9, the frequencies of the middle pixel values 
dominate the image. This can pose a problem to object recognition techniques such as 
edge detection. The second image, Figure 3.10, shows the results of the histogram 
equalization method in OpenCV. It is easy to see that the puppy is more salient and can 
be distinguished from the background.  
 

 
Figure 3.9: Original low contrast image  
(Permission Requested from OpenCV) 
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Figure 3.10: Shows Histogram Equalized Output  

(Permission Requested from OpenCV) 
 

3.10. Power 
 
Power is the most important factor for the robot. Without power, the robot cannot 
function. The robot for this project will need to have enough power to supply the 
sensors, motors, motor controllers, microcontrollers, and computer processor. Since the 
battery must be able to last up to two 10 minute rounds, it is important to know what 
type of battery will best serve this project. Usually selecting a battery is the last 
component to add to the project, since there are calculations for each component and a 
desired lifetime of the robot. Once all the components are assembled, the battery can 
be chosen.  
 
However, not all batteries are the same. Some require more maintenance than others 
and some batteries will not last as long as others. In this chapter, several different types 
of batteries are researched to compare the advantages and disadvantages of each. 
There are also different battery products that were examined to best function for this 
project. 
 

3.10.1. Sealed Lead-Acid 
 
Sealed Lead-Acid batteries are most commonly found in automobiles and small 
vehicles. What makes lead-acid batteries unique, is the ability to supply bulk power at 
low cost and that they are the most reliable and cost effective batteries on the market. 
They are very robust and take plenty of abuse without failing. They can discharge high 
current with ease. Sealed lead-acid batteries are capable of having a long shelf life and 
can be left on trickle or float charge. These batteries can come in several different 
capacities and have a large range of sizes to choose from.  
 
There are some disadvantages in sealed lead-acid batteries. These batteries are are 
heavier than any other battery and can only have a charge efficiency of 70% after a 
certain amount of cycles. These batteries can take up to 14-16 hours to fully charge. 
These batteries are also prone to leaking and not very environmentally friendly. Deep 
cycling can also drain the battery life since there is a charging memory. For this project, 
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it would be ideal to use a sealed lead-acid battery as they are the most heavy duty 
battery capable of powering the battlebot robot. Table 3.13 contains the comparisons 
between 12v, 3ah sealed lead acid batteries in terms of performance, size, and price. 
 

Type Brand Max 
cycles at 
100% 
discharge 

Weight 
(lb) 

Dimensions 
(in) 

Capacity
(AH) 

Price 
($USD) 

AGM SLA Duracell 150 3.0825 5.28x2.64x2.
63   

3.3 $30.99 

AGM SLA Pirate 
Battery 

- 4.00 3.54x2.76x3.
98 

4.0 $21.00 

Table 3.13: Comparison of Sealed lead acid batteries 
 

3.10.2. LiFePO4 
 
Another alternative for a battery is the Lithium Iron Phosphate battery, or LiFePO4 for 
short. These type of batteries are commonly found in electronics, vehicle use, and 
backup batteries. They are a relatively new battery technology, invented in the 1980s.  
While cordless tools and laptops rely heavily on this type of power, LiFePO4 batteries 
are known for being much safer than the sealed lead-acid batteries and can recharge 
much faster. LiFePO4 batteries also have a larger useable charging capacity, over 50% 
more than a sealed lead-acid battery, and have a lifetime cycle use of over 10 times the 
lifespan than of a sealed-lead acid battery. There is no risk of overcharging with an 
LiFePO4 battery. Even after 2000 cycles, an LiFePO4 battery can still supply 80% of its 
discharge. It is also known that the LiFePO4 battery can still supply the same amount of 
output voltage at 20% as it would at 80% discharge. According to the PowerTech 
Systems website, the LiFePO4 batteries are over 77% smaller and 194% than a sealed 
lead-acid battery. Even with a smaller size and smaller weight, the energy and power 
supply remains constant. There are not too many disadvantages of a LiFePO4 battery 
to name. A LiFePO4 battery is expensive to manufacture and requires a complicated 
circuitry to maintain and regulate the battery’s safety and control. LiFePO4 batteries are 
also sensitive to overheating and there are known safety concerns in which these 
batteries can explode or catch fire. Therefore, LiFePO4 batteries will be of great 
consideration for powering the computer processing and the PCBs for this project. They 
have a small nominal voltage, are extremely lightweight, and can supply constant 
voltage no matter how discharged the battery may be. A few selections have been 
made in either considering the battery to power the entire robot or just supplying power 
to the electronics such as the microcontroller and PCB design. Table 3.14 contains the 
specifications for batteries of choice. 
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Product ID Voltage (V) Capacity 
(mAh) 

Charging 
Rate 

Weight Price 
($USD) 

LiFePO4 
18650 
 

12.8 2200 2.2A standard 295g $80.00 

Tenergy Li-
Ion  

 

7.4 2200 0.4A standard 99g $13.99 

Table 3.14: Comparison of LiFePO4 batteries 
 

3.10.3. NiMH 
 
A nickel-metal hydride (NiMH for short) battery is a popular choice among consumers 
for being the most reliable and low cost rechargeable battery. They can behave like a 
nickel cadmium battery, but with the different chemical responses and NiMH contains a 
higher energy density and three times the capacity. Some would say NiMH batteries are 
a less expensive version of the lithium ion battery.  
 
For charging NiMH batteries, there is a risk of overcharging and some companies 
suggest keeping the charging time between 10-20 hours. Trickle charging is the safest 
method. If the battery is heating up during trickle charging, then the current supply is too 
high and could lower the efficiency of the battery. Although trickle charging is the safest, 
NiMH require fast charging in order for NiMH batteries to last longer. Lower current 
charging can cause battery memory, which is a case where a battery can lose its 
capacity over time.  
 
The few disadvantages of a NiMH battery are that these batteries have a short shelf life 
due to the fast charging they require and the battery memory it can develop. They also 
require a complex charging algorithm. These batteries can generate high heat during 
charging and contain a high self-discharge. For choosing NiMH batteries, there is an 
incredible amount of resource in these kind of batteries. These batteries may be chosen 
because of their charge capacity, the time it would take to charge them, and their cost. 
Table 3.15 shows a side by side comparison between two batteries to consider for this 
project. 
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Product ID Capacity Dimensions Weight Price ($USD) 

#9311 12V/300mah 60x30x19(mm) 3.8oz $22.50 

#6056 12/800mah 51x20x46 4.8oz $16.95 

Table 3.15: Comparison of NiMH batteries 
 

3.10.4. LiPO 
 
The research for the battery suitable for this project goes further with LiPO batteries. 
These batteries are popular among consumers who look to use batteries over radio 
frequencies and require high power output. If our robot needs a video datalink and the 
use of radio frequencies to manually operate the robot remotely, the LiPO battery will be 
able to provide enough energy to do so. 
 
LiPO batteries contain some advantages over the NiMH batteries and there are a few to 
name. The first advantage from LiPO batteries is that these batteries are much lighter in 
weight, these batteries can offer higher capacities, and can project a higher discharge 
weight than of a NiMH battery. LiPO battery cells are stored in pouch form which allows 
them to be lighter and be flexible on retaining shape. This can be considered if there is 
a lack of space and strict weight limitations in the project. Every battery contains a 
setback or two and the LiPO battery will definitely hold some disadvantages. These 
disadvantages are that they have a shorter life span than of any of the batteries that 
have been compared. There are safety issues, such as the risk of a fire or explosion 
occurring if these batteries are punctured. These batteries also require special care for 
storing and charging.  
 
LiPO batteries have a nominal voltage of 3.7V. If more voltage is required, they can 
simply be added in series. The capacity of a battery can be determined just like any 
other battery from the amp hour these batteries can consume. LiPO batteries can 
consume anywhere from 30mAh to 22,000 mAh. Another factor to consider is the 
discharge rating of the LiPO battery. This is the amount of discharge a battery can give 
without ruining the battery. The notation ‘C’ is used to determine the capacity in amps. 
Most applications will use 20 or 25C as a battery but for heavier duty applications such 
as a truck or large vehicle, 40C battery would need to be used.  
 
Table 3.16 below contains the results from research on several LiPO products that 
could potentially be used for this project to best serve powering the motors, 
microcontrollers, and sensors. 
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Brand Voltage (V) Discharge 
Rate (C) 

Capacity 
(mAh) 

Price ($USD) 

Dynamite  11.1 25 1500 30.99 

Ellite 11.1 20 1000 24.99 

E-flite 11.1 20 1250 23.99 

Table 3.16: Comparison among different LiPO products 
 

3.11. Voltage Regulators 
 
Voltage regulators are used in order to maintain constant output voltages. These are 
important for power distribution and stability. While motors need to operate on 12V or 
less, circuit boards and microcontrollers require much less voltage and current, such as 
5V or 3.3V.  The next two subsections of this chapter explore the options of how linear 
and switching voltage regulators will be beneficial in maintaining constant voltages for 
this project. 
 

3.11.1. Linear Voltage Regulators 
 
The circuits in our project will need a constant voltage to avoid the risk of instability or 
overpowering the circuit. Linear voltage regulators contain a voltage controller current 
source in order to maintain a constant voltage at the output. Texas Instruments 
suggests that one must follow a few different requirements when picking out the 
appropriate voltage regulator.  
 
For the best application there must be some evaluation in knowing the maximum load 
current, the kind of input such as a battery power source, the output voltage precision, 
and what special features are available. These requirements are known from previous 
sections in what kind of current our motors, microcontrollers, and sensors will use. 
Since our components are in a range from 3.3V to 12V voltages and 1A to 3A currents, 
there are a few linear voltage regulators that could be deemed suitable for the purposes 
of our project.  
 
For the maximum load current, one must take into consideration an important value of 
the load current. Ultimately, the regulator must be able to withstand worst case 
scenarios in order to maintain a reliable performance. If our microcontroller is going to 
operate around 500mA, it would be ideal to keep that as the maximum current for the 
proposed system.  
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Our input source will be a battery. For applications of a battery power source, LDO 
regulators will be used as they are highly recommended since they can utilize the 
available input voltage fully. 
 
Finally, special features - these are provided to add flexibility to our design. Some of 
these features in LDO regulators include a shutdown pin which can allow a regulator to 
be shut off through a microcontroller. Another special feature is a load-dump protection, 
which can be considered for the motors where a regulator can automatically shut down 
during overvoltage and turn itself back on when the overvoltage passes. All of these 
special features will be taken into consideration with the development of the proposed 
system’s design. 
 
Some of the choices in voltage regulators to take into consideration are the LM78xx 
series. These voltage regulators are easy to install and are low in cost. The LM7905 
voltage regulators can supply an output current up to 1.5A and can take in a range of 
7V to 25V. 
 

3.11.2. Switching Voltage Regulators 

 
Switching voltage regulators, like the one seen in Figure 3.11, are also an important 
device in power and voltage regulation in electronics. They can regulate an input 
voltage by switching on and off a series element to maintain a constant voltage. These 
devices can operate very much like a linear voltage regulator, but can be used for 
higher voltages in order to avoid wasting a lot of power. Linear voltage regulators are 
beneficial to lower voltages therefore switching voltage regulators will be used in 
keeping a steady voltage amount the motors. Switching voltage regulators are fully 
conductive devices when turned on or completely shut off, so no power is dissipated, 
allowing these devices to be high in power efficiency. They can also convert DC to DC 
power more efficiently than that of a linear voltage regulator.  
 
There are many switching voltage regulators on the market. The choice of a voltage 
regulator can vary based on how much frequency is needed for switching as well as 
what range of voltage regulation is required. These frequencies range from 300 kHz up 
to 4 MHz, allowing full flexibility for this project. The choice of using switching voltage 
regulators will be determined if, during testing, there is a high dissipation of heat within 
linear voltage regulators or if a large heatsink would be undesirable.  
 
A common switching voltage regulator would be the DE-SW0XX family of switch voltage 
regulators shown in Figure 3.11. These devices allow for taking in any voltage and 
stepping it down to the 5V voltage requirement suitable for microcontroller. It can step 
down these voltages in an efficient manner with no power dissipation, up to 87% 
efficiency. There is a drop out voltage in which the regulator will not be able to regulate 
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power and that is at 1.3V. It drives a continuous output current of 1A and has the ability 
to drive inductive loads. It can also work off a breadboard for easy prototype testing and 
hardware designing.  
 

3.11.3. DC to DC Converters 
  
While there are voltage regulators that can step down voltage, the standard LM78XX do 
not supply enough current for the NERF blasters and TK1. Therefore, DC to DC 
convertors must be used. While there are step up and step down DC to DC convertors, 
this project implements variable step down. The table below compares the different type 
of convertors considered. 
 
  

Model Voltage 

Range 

Max 

Current 

Short 

protection 

Working 

frequency 

Price 

DROK DC Car 
Power Supply 
Voltage Regulator 

 

5-40V 12A Yes 300kHz $10.99 

DROK 5 Pcs DC 
Step Down variable 
Voltage Regulator 

4.5-40V 3A Yes 150kHz $19.99 

DZS Elec DC-DC 
Step-down 
Constant Current 
Regulator  

  

4-38V 5A Yes 180kHz $9.49 

Table 3.17 Comparison of DC-DC convertors 
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3.12. Chassis 
 
The chassis of the robot will be the outer case to protect the internal components and 
provide a protective layer against incoming projectiles from enemy robots. The chassis 
will be designed and provided by the Mechanical team.  
 

3.12.1. Preliminary Chassis Design 
 
The design is focused around the design of a military tank. Following the specifications 
of the size, which is limited to 3ft x 3ft x 3ft, all the electrical components will be able to 
fit within the case of the robot with the turret and sensors elevated by a tripod structure 
from the center of the robot’s chassis. The material for the chassis will be manufactured 
by Lockheed Martin and is planned to be 3D printed. The material for this chassis is to 
be made of ULTEM resin, which provides incredibly high thermal resistance and high 
strength and durable stiffness. 
 
Figures 3.12-3.15 illustrate how the body of the robot is built. Figure 3.12 shows the 
front view of the chassis. As seen in the figure, there is a platform with 4 walls inclining 
inward for stability. All the circuit boards will be placed on the platform and will be 
protected by the walls of the chassis.  
 

 
Figure 3.11: Front view of chassis 

(Team Designed) 
 
In Figure 3.13, there is the bottom view of the chassis. This is where all the motors will 
be mounted with any necessary wires to be placed along the perimeter of the robot. The 
DC motors will be connected and wired through holes that will be drilled into the 
platform so that the wires will remain organized and secured throughout the 
competition. 
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Figure 3.12: Bottom view of chassis 

(Team Designed) 
 

 
Figure 3.13: Side view of chassis 

(Team Designed) 
 

Figure 3.15 shows a model of the desired look for the battlebot robot. The two Nerf-
blasters will be mounted in the middle and will rotate freely from the platform of the 
robot. There will be two sensors in the middle of the two Nerf-blasters to produce the 
firing mechanism subsystem. This subsystem will be mounted onto a rotating tripod 
structure. 
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Figure 3.14: Completely assembled robot 

(Team Designed) 
 

3.12.2. Final Chassis Design 
 
The final design of the Nerf enabled battlebot, while highly comparable to the 
preliminary design, features a multitude of minor changes. The structure of the chassis 
was not manufactured by Lockheed Martin or  even 3D printed with ULTEM resin. For 
cost reductions and faster manufacturing times, the structure of the robot was designed 
with multiple layers of laser cut MDF wood. The material is highly durable, extremely 
affordable, and easily modified by tools such as a power drill. The sidewalls, however, 
maintained the same design with the caveat of being manufactured by a lower quality 
3D printer - still the 3D printer material is able to endure the weight of the top turret 
system. 
 
Figures 3.12-3.15 illustrate how the final body of the robot is built. Figure 3.12 shows 
the front view of the chassis. The changes with the MDF wood can be seen in the 
figure.  
 

 
Figure 3.15: Front view of chassis 

(Team Designed) 
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In Figure 3.13, there is the bottom view of the chassis. The DC motors are still 
connected and wired through holes that are drilled into the platform so that the wires will 
remain organized and secured throughout the competition. Most of the power wiring is 
maintained under the robot for easy recognition of power distribution. As seen in the 
figure, the battlebot now features only two DC motors at the front of the robot, while 
caster wheels take their place at the back of the robot. This modification was done 
because of budget cuts, reducing the cost of manual navigation directly whereas the 
motors are still providing enough force to drive the robot.  
 

 
Figure 3.16: Bottom view of chassis 

(Team Designed) 
 

Figure 3.14 provides a better view of how the caster wheels are seen from the side of 
the robot. They are tucked in slightly to withstand the weight of the robot without 
buckling inwards or outwards. 

 

 
Figure 3.17: Side view of chassis 

(Team Designed) 
 

Figure 3.15 shows a model of the final look for the battlebot robot. The two Nerf-blasters 
are still mounted in the middle and will rotate freely from the platform of the robot. The 
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Nerf-blaster positions have been swapped because of a small error having to do with 
the orientation of the extra ammunition cartridge of the nerf dart gun; the gun would not 
mount properly on the opposite side. The two sensors remain placed in the middle of 
the two Nerf-blasters to produce the optimal viewing angle. The turret system is situated  
onto the original rotating tripod structure. 

 

 
Figure 3.18: Completely assembled robot 

(Team Designed) 
 

3.14. Nerf-Blaster 
 
The firing mechanism for this project will be using Nerf-blasters. The rules of 
competition allow a minimum use of one Nerf-blaster that can shoot Nerf-balls and a 
maximum use of two. If a second Nerf-blaster is used it would be required to shoot Nerf-
darts. 

3.14.1. Nerf-Blaster Selection 
  
For choosing Nerf-blasters for this project, it was important to take in the consideration 
of how far the ammo could reach. It was required that up to 45 feet was needed to 
ensure that the dart and ball blasters would reach impact. Table 3.14. contains a full run 
down of the different types of NERF blasters considered. 
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Name Ammo 
Type 

0-Angle 
Range 

Velocity Price 

Rival Zeus MxC-1200 
Battle Gun 

Ball 65-75 feet 100 feet/second $39.99 

Rival Khaos MXVI-
4000 

Ball 65-75 feet 100 feet/second $62.99 

N-StrikeElite Rampage Dart 50 feet 75 feet/second $39.9 

Rapidstrike CS-18 Dart 55 feet 75 feet/second $39.99 

Table 3.18 NERF Blaster Comparison 
  

For the Nerf-blaster that will be firing Nerf-balls, the initial choice was the Nerf Rival 
Zeus MXV-1200 blaster (seen in Figure 3.18). This product uses a motorized blaster 
with the capability of firing rounds up to 12 high impact rounds at 300mps. The cost of 
this blaster is $49.99. 
 

 
  

Figure 3.19: Nerf Rival Zeus MXV-1200 
 (Permission Requested from Hasbro) 

  
The second Nerf-blaster that will be used is the CS-18 N-Strike Elite Rapidstrike (seen 
in Figure 3.19). This Nerf-blaster will be firing the more common NERF dart ammo. 
These darts can fire up to 75 feet on this weapon. This gun will require 6V to fire the 
darts as it uses a powering motor to increase the rate of fire. It has been planned to 
alter the firing mechanism for a faster rate of fire and install a larger ammo magazine. 
The CS-18 N-Strike Rapidstrike is regularly priced at $39.99. 
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Figure 3.20: Rapidstrike CS-18 
(Permission Requested from Hasbro  

  

3.14.2. Nerf-Blaster Research and Development 
  
A NERF-blaster’s function is simple. It acts on a plunger mechanism, as the spring in 
the barrel of the blaster is pulled back, a dart or ball is loaded into it. Once the spring is 
released, air is pressured into releasing the ammo. Since NERF ball and darts are 
made of foam, they can travel at a high velocity. 
  
The NERF blasters were opened up to discover that each motor had a motorized 
flywheel and a motorize triggering system.  The implementation was to power the 
flywheels to be on at all times and for the darts to be fed into the flywheel from the 
remote triggering. 
  
For the Rapidstrike CS-18, all the safety switches were bypassed and wire extensions 
were made from the flywheel motors and the triggering system. This NERF blaster 
operated on 6V and needed a 3A start up for the flywheels. There was also a 
consideration in delay time to ensure that the trigger motor would not jam with the darts. 
Through testing, it was found that in order to keep the darts from jamming, the fire 
blaster had to shoot in intervals of 2 to 3 darts per activation. This was to allow enough 
time for the pushing trigger to complete a full cycle and not interfere with the dart ammo 
reloading mechanism. 
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Figure 3.21 Insides of Rapidstrike CS-18 

  
Our second NERF blaster system was initially the Rival Zeus MXV-1200. This NERF 
blaster could shoot a magazine of only 15 balls. It contained a flywheel but no triggering 
system like the dart NERF blaster had. Therefore, with collaboration with the 
mechanical team a modification was made to extend the magazine to 50 balls and use 
a servo motor to feed the balls into the flywheel. 
  

  
Figure 3.22 Insides of Rival Zeus MXV-1200 

  
This modification was based on a design from a Youtube channel, “Out of Darts.” A 12V 
fan was used to push the balls through the tubing and the servo motor was going to act 
as a switch to let the balls feeding into the flywheel. Unfortunately, there was not 
enough time to make this modification work properly, since there were difficulties with 
the fan not supplying enough force to push the ball. 
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Figure 3.23 Rival Zeus MXV-1200 modification 

 
Since two blaster systems were still needed, the final design implemented a Rival 
Khaos MXVI-4000.  This NERF blaster utilized 44 ball magazine and was able to shoot 
at far range. This $70 NERF Blaster operated on 9V. 
 

 
Figure 3.24: Rival Khaos MXVI-4000 
(Permission Requested from Hasbro) 

  
This NERF blaster was taken apart and all the safety switches were bypassed. This 
blaster contained a flywheel and a conveyor belt to feed the darts through to the 
flywheel. The flywheels remained on at all times and the conveyor belt was used to be 
turned on through the microcontroller. 
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Figure 3.25: Insides of the Rival Khaos MXVI-4000 
 

3.15. Motor Controller 
 
While the microcontroller is responsible for sending the controls for direction and speed 
to the motors of the robot, it still does not contain enough power to drive all the motors. 
A motor controller, displayed in Figure 3.20, will be able to work in connection with the 
microcontroller and also connect to the power supply in order to drive the motors. The 
robot will be driven by four DC motors, two stepper motors, and a servo motor. With a 
total of seven motors for powering, there are considerations in choosing the right motor 
controller to do the job.  
 
For choosing a motor controller for the DC motors, the nominal voltage must be known. 
Once the voltage is known, the continuous current is determined. It is important to know 
these two values for balance and stability. Too much current can fry the microcontroller 
and not enough current will not turn the motors. There is also the type of control these 
motors will use. These controllers can be pulse width modulation, analogue vogue, 
UART, or R/C.  
 
In section 3.9 Motors, several motors were researched and a motor controller can now 
be chosen. The nominal voltage for the DC motors and stepper were 12V and contain a 
continuous current of 2.875A. The servo motors do not require the same amount of 
voltage and current of a DC motor therefore it is not suitable to connect them in parallel 
them. Figure 3.20 shows a setup of how the motors would be connected to the 
microcontroller and driven by the motor controllers. 
 
There are thousands of motor controllers available and there is one motor controller that 
will be able to power all seven of the motors. A motor controller to consider for this 
project is the called the Adafruit Motor/Stepper/Servo Shield for Arduino v2. This motor 
controller uses MOSFET technology and contains its own pulse width modulator driver 
chip for easy power control. It has 2 connections for the servo motors, can drive up to 4 
DC motors and supply power to 2 stepper motors. The price for this motor controller is 
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only $19.99 and if more motors will be required later on, this motor controller can stack 
32 times, supplying up to 128 DC motors.  
 
Another motor controller to consider for this project is the 10A 5-25 Dual channel motor 
shield by Crypton. This motor controller is capable of driving up to two bidirectional 
motors. These motor controllers support both locked-antiphase and sign-magnitude 
PWM operation. Each motor controller is equipped with activation buttons for quick 
power testing. They sell for $23.48 USD per board and the integration step up to this 
project is easy.  
 

3.16. Manual Navigation 
 
Manual navigation is imperative to the development of the proposed system. Manual 
navigation will be the main means of controlling the robot’s movements. This section will 
highlight the research gathered regarding manual navigation. It will include sections 
discussing PID control, odometry model, and how the robot will transfer data in order to 
allow the user to successfully manually navigate wirelessly. 
 

3.16.1. PID Control 
 
There are various movements of which each of our different motors will have a 
responsibility for. The four DC brushed motors will be used to drive the wheels of the 
robot around the course like a car. The two stepper motors will be used to aim the Nerf-
Blasters in synchronized fashion. One to pan or move them horizontally and the other to 
tilt them or move them vertically. The last motor or the servo, will be used to tilt the 
camera to keep the target centered in the field of view. In order to direct all these 
movements, we will design a PID controller. A PID controller incorporates a feedback 
loop between an input signal sent to the motors and their outputted physical movement, 
to smoothly reach its goal. 
  
PID controller stands for proportional integral derivative controller. Each of the names in 
the abbreviation are different controllers; each uses a particular model of computing a 
gain to reduce error. Error compares the difference between an input at a given time to 
its desired output or goal. The different functions of these controls are shown in Table 
3.17 below.  
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Table 3.19: PID Control Functions 

 
In the table shown above, “o” refers to the measured output of the motor. The “K” terms 
are constant parameters, which are tuned together. The “i” terms are the error 
measurement, which is the difference between a current position or speed to the 
desired position or final speed. The proportional controls the motor in a manner 
proportional to the instantaneous error. The derivative controller avoids the motors 
overshooting by acting in proportion to the rate of change of the error. The integral 
controller acts in proportion to the accumulated error, which is useful for eliminating 
steady-state errors.  
 

3.16.2. Odometry Model 
 
We are using encoders in our wheels as instruments of measuring our robot’s 
movements to determine its location in the course. In order to do this, we will need to 
use an odometer model to convert the information read from the encoders to real world 
coordinates. The model we intend to use is detailed below. 
  

● Begin with the following equations relating the change in position of the wheels to 
the circular arc of the turning axis as seen in Figure 3.21. 

Eq(1): Δsl = Rα 
Eq(2): Δsr = (R+2L)α 
Eq(3): Δs = (R+L)α 

 
Figure 3.26: Odometry p1- Example showing the relations of variables   

(Permission Requested from Princeton) 
 

● Use Eq(1) and Eq(2) 2 to solve for the distance from the right and left wheels to 
the axis of the turn. 

 
Eq(4): Rα = Δsl 
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Eq(5): Lα = (Δsr - Rα)/2 = Δsr /2 – Δsl /2 
 

● Substituting Eq(4) and Eq(5) into Eq(3) we represent Δs as a function of Δsl  and 
Δsr. 

 
Δs = (R+L)α = R α + L= Δsl + Δsr /2 – Δsl /2 = Δsl /2 + Δsr /2  
Δs = (Δsl + Δsr) /2 
 

● To calculate the change of the angle of the robot’s orientation Δθ, is equal to the 
circular arc’s center point as seen in Figure 3.22.  

  Δθ = α 

 
Figure 3.27: Odometry p2- Example relating circular α to the orientation 

 (Permission Requested from Princeton) 
 

● Then solve for α by equating α from Eq(1) and Eq(2). 
Δθ = (Δsr - Δsl ) /2L 

 
● With Δθ and Δs we are able to calculate the position change in real world 

coordinates. Using trigonometry to model the Δx and Δy  as  functions of Δd. 
 
Δx = Δd cos(θ + Δθ/2) 
Δy = Δd sin(θ + Δθ/2)  

 

● As seen in Figure 3.23 the paths Δd ≈ Δs are slightly different. The 

measurements will be made fast enough to approximate that Δd ≈ Δs. 

Δx = Δs cos(θ + Δθ/2) 
Δy = Δs sin(θ + Δθ/2)  

 

 

 
Figure 3.28: Odometry p3- Example denoting difference of Δd  and Δs  

(Permission Requested from Princeton) 
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Using the above model, we will be able to approximate our robots location on the field. 
The coordinates will not be exact because of the assumptions that were made. Also 
there will be noise from the encoders that will impact the calculations. Other causes of 
inaccuracy to the model can arise from the wheels slipping, hitting a bump, or driving on 
carpet.  
 

3.16.3. Wireless Data Transfer 
 
In order to successfully develop a plan for functional manual navigation of the proposed 
system, different methods of transferring data to a control device must be considered. 
The desired method will have a great impact on how the robot will be programmed. 
Since a requirement of this project is to wirelessly provide video footage of the robot’s 
autonomous tracking capabilities in real time, it is logical that both the video footage and 
the manual navigation will be wirelessly operated through a laptop. One can then 
control the robot solely by viewing the streamed video on the laptop and using the arrow 
keys to navigate accordingly. 
 
Generally, there a three ways that the robot will be able to interact wirelessly with laptop 
in order to successfully navigate through the course environment. The first way that can 
be chosen is using radio frequencies, RF, which uses a transmitter and a receiver to 
send data across a specific frequency. One benefit of using radio frequencies is that 
they allow for an extremely long range. Radio frequencies also allow for a 
straightforward setup of the system. 
 
Two different wireless protocols that can be explored that utilize radio frequencies are 
ZigBee and Xbee. Zigbee allows for a low-cost and low-power wireless connection 
between devices. It can operate at many different frequencies, such as 900MHz, 868 
MHz, and even 2.4 GHz. There is a low latency while using Zigbee, which can be 
beneficial to the proposed system. The data rate of Zigbee is about 250 kps, which is 
much lower than that of Bluetooth and Wifi. Xbee is very similar to Zigbee, as it includes 
all the features of Zigbee, but has new added features. Zigbee’s features already prove 
to be efficient, but lacks in data rate transfer. Unfortunately, Xbee does not provide a 
higher data rate than Zigbee.  
 
Although radio frequencies prove to be robust enough to handle manual navigation of 
the system, transmitting the video footage as well with the manual navigation is 
seemingly close to impossible with radio frequencies. Transmitting large files such as 
video over a radio frequency requires a very high bandwidth, which may not be 
available within the region of the competition destination. As stated earlier, a goal set in 
place is to obtain the information for both the video footage and manual navigation 
through the same means. Therefore, other options must be explored. 
 
Another more specific RF option for the manual navigation of the robot is to use 
Bluetooth in order to wirelessly obtain data. Bluetooth will allow for two-way 



 

62 
 

communication of data from the laptop to the robot via the Raspberry Pi. Even though 
Bluetooth is a RF, Bluetooth allows for higher data rates than standard RFs, since it 
follows specific protocols for communication. 
 
Although Bluetooth provides a great way to both send the video stream and data from 
the motors for manual navigation, Bluetooth only allows for a maximum range of 10 
meters in most cases. With the full length of the field being roughly 40 feet, another 
option may prove to be more beneficial. Even though the robot will most likely travel no 
farther than 20 feet away from the sidelines, since the robot should be staying in its 
required zone, there could be a possibility where the robot will be more than 10 meters 
away from the controller. If this proves to be a considerable trade off, it may be better to 
choose another option for manual navigation of the robot. 
 
The last option explored for the robot to wirelessly send data for both the manual 
navigation and the video stream is to use a Wi-Fi network. Wi-Fi will allow the user to 
connect to the proposed system from anywhere in the world. Wi-Fi will also provide a 
significantly high data rate that should prove to be sufficient for transmitting both the 
data for the video stream and the manual navigation. However, the competition location 
will not provide Wi-Fi that the robot will be able to connect to. Therefore, a local network 
may be considered a solution to this problem. By establishing a connection between the 
Raspberry Pi and the laptop via a router, the proposed system will be able to indeed 
transmit the necessary data in theory to the laptop. This can be considered the most 
reliable option to providing a secure connection between the proposed system and the 
laptop. 
 
After all options have been explored, radio frequencies, Bluetooth, and Wi-Fi, these 
options were compared thoroughly in Table 3.18 
 

  
Data rate Maximum Range 

Power 
Comparison 

Radio 
Frequencies 

(Zigbee) 
250 Kb/s 7 meters Low 

Bluetooth 25 Mb/s Normally 10 meters Medium 

Wi-Fi 54 Mb/s 
Normally 100 meters, 
but can be unlimited 

High 

Table 3.20: Comparison of Data Transfer Wirelessly 
 

3.17. Component Selection Summary 
 



 

63 
 

The Part Selection Summary describes the components that were selected at the time 
of drafting the project and components that were selected while testing and finalizing 
the battlebot design. 
 

3.17.1. Preliminary Component Selections 
 
Table 3.19 below contains a list of the main functional computer/electrical components 
that are to be implemented in this project’s design. 
 

Component Name Quantity 

Image Sensor Logitech HD Pro Webcam C920 1 

Rangefinder LIDAR-Lite 3 Laser Range Finder 1 

Processing Unit Raspberry Pi 3 Model B 1 

Microcontroller ATmega328p 2 

Motorshield 10A Dual Channel Bi-directional DC Motor Driver 2 

DC Motors NeveRest 40 Gear Motor 4 

Encoder *Attached to NeveRest 40 Gearmotor 4 

Servo Motor Futaba S3004 Standard Servo Motor 2 

Stepper Motor 3V 1.7A 68oz-in Stepper Motor 1 

Nerf-blaster (Dart) CS-18 N-Strike Rapidstrike 1 

Nerf-blaster (Ball) Nerf Rival Zeus MXV-1200 1 

Table 3.21: List of main computer/electrical components selected 
 
The Logitech HD Pro Webcam C920, seen in Figure 3.24, was selected as the primary 
vision sensor. This camera provides for better picture quality and more than enough 
frame rate needed. It is highly compatible with other systems as it is attached by a 
simple USB cable, which is included in the packaging. Additionally, the USB cable has a 
length of six feet; about 60 inches longer than the ribbon cables that come with the 
other camera alternatives. A lengthy cable is necessary as the vision sensor will sit at 
the highest point of the robot and may need to twist and turn.   
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Figure 3.29: Logitech HD Pro Webcam C920  

(Permission Granted by Logitech) 
 

The selected rangefinder was the Lidar-Lite 3, shown in Figure 3.25. While there are 
many alternative products that are capable of finding the range of an object, not many 
seem to provide the desired range and accuracy as does the Lidar Lite 3 at its price 
point. At a regular price of only $150, this rangefinder will be able to detect objects at 
more than three times the length of the competition course and with comparable 
accuracy of higher end models. The use of laser range detection was also attractive as 
it is more likely to come across sound or radio interference than it is to come across 
light interference since the course is set indoors. 
 

 
Figure 3.30: LIDAR-Lite 3 Laser Range Finder  

(Permission Granted by RobotShop) 
 
For image processing, the Raspberry Pi 3 Model B (Figure 3.26) was selected because 
of its affordability and popularity on the market. This microprocessor comes with enough 
memory to allow for image resolution flexibility when running detection algorithms. It is a 
quad-core system which, when threaded properly, should have no trouble processing 
higher frames per second, thus potentially increasing aiming accuracy of moving 
targets. Amongst other features, it includes multiple USB ports, for an easy camera 
connection, and Wireless LAN, for required wireless data transfer. 
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Figure 3.31: Raspberry Pi 3 Model B 
 (Permission Granted by RobotShop) 

 
To compress the amount of subsystems in place and complete the requirement of 
implementing a PCB board, it was decided to combine the microcontroller with the PCB 
board. The selected microcontroller was the ATmega328p (Figure 3.27), which is used 
on the Arduino UNO board. The driving factors for this selection were the very low price 
of this component (inclusive that it comes in pairs of three’s - possible backups) and that 
the amount of pins included with this microprocessor is sufficient for the number of 
inputs and outputs required by the robot. 
 

 
Figure 3.32: ATmega328p  

(Permission Requested from oomlout) 
 
The motor driver seen in Figure 3.28 was chosen because of its ability to handle the 
robot’s estimated power system. The other motor drivers that were considered were 
found not to be able to handle the amount of current necessary for the motors in the 
system. 
 

 
Figure 3.33: 10A 5-25V Dual Channel DC Motor Driver  

(Permission Granted by RobotShop) 
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As previously discussed, encoders can be found packaged with gear motors, which 
simplify purchasing and are more affordable as a bundle. The selected gear motor, the 
NeveRest 40 Gearmotor (Figure 3.29), is one such gear motor that comes with an 
attached encoder. 

 
Figure 3.34: NeveRest 40 Gearmotor with attached encoder  

(Permission Requested from AndyMark) 
 

It is not intended for the camera to be rotating a full 360 degrees, but to pan slightly left 
and right to accommodate the change in direction of the robot (so long as the robot 
does not turn completely around). The Futaba S3004 Standard Servo Motor (Figure 
3.30), based off reviews, appears to transition smoothly and its packaging already 
includes a bracket for mounting objects. This motor is also very affordable, at a little 
under $15. 
 

 
 

Figure 3.35: Futaba S3004 Standard Servo Motor  
(Permission Granted By RobotShop) 

 
The stepper motor in Figure 3.31 was selected for its size relative to the torque it 
provides. This motor will be rotating the upper portion of the robot holding other 
components such as the Nerf-guns, camera, and rangefinder so it must be able to 
support the weight of those combined objects.  
 
The Nerf-blasters pictured in Figure 3.18 and Figure 3.19 were selected because of 
their size, loading and firing style, rate of fire, and firing distance. These blasters are 
within requirement size of the robot without having to modify the weapons themselves. 
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The firing mechanism for these weapons have the assistance of electronic components. 
As long as the trigger is held and the blaster is fed ammo the blaster will keep on firing 
and, added, at a fast rate. Finally, the shot range for both weapons is more than 40 feet, 
which is the full length of the course. 
 

3.17.2. Final Component Selections 
 
Table 3.19 below contains a list of the main functional computer/electrical components 
that are a part of the final battlebot design. 
 
 

Component Name Quantity 

Image Sensor Logitech HD Pro Webcam C920 1 

Rangefinder LIDAR-Lite 3 Laser Range Finder 1 

Processing Unit NVIDIA Jetson TK1 1 

Microcontroller ATmega328p 1 

DC Motors NeveRest 40 Gear Motor 4 

Motorshield 10A Dual Channel Bi-directional DC Motor Driver 1 

Motorshield HiTechnic DC Motor Controller 1 

Encoder *Attached to NeveRest 40 Gearmotor 4 

Nerf-blaster (Dart) CS-18 N-Strike Rapidstrike 1 

Nerf-blaster (Ball) Rival Khaos MXVI-4000 1 

Table 3.22: List of main computer/electrical components selected 
 
A comparison of the components that were seen in section 3.17.1 with the components 
that are seen in this section reveals that the following components were: 
 
Removed: 

● 3V 1.7A 68oz. Stepper Motor (2) 
● Futaba S3004 Standard Servo Motor 
● Raspberry Pi 3 Model B 
● Nerf Rival Zeus MXV-1200 
● ATmega328p (1 of 2) 
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Added: 
● NVIDIA Jetson TK1 
● HiTechnic DC Motor Controller 
● Rival Khaso MXVI-4000 

 
Refer to section 5 Hardware for more detailed information about the components that 
are listed above. 
 

3.17.3. Part Acquisition  
 
Fortunately, since the proposed system’s design has been sponsored by Lockheed 
Martin with an overall budget of $2,000, we are able to pick out quality parts for the build 
of our system. We chose to search for parts only from reliable retailers, since we 
wanted to guarantee that the parts would arrive on schedule. Listed below are all the 
retailers we have acquired components from thus far for the proposed system. 
 

3.17.3.1. Amazon 
 
Although Amazon is known for many home products, Amazon also carries many robot 
parts for a reasonable price. Amazon also provides free two-day shipping for Amazon 
Prime customers, which allows us to stay ahead of schedule with the development of 
our project. With a wide variety of products, reasonable prices, and fast delivery, 
Amazon has become our top contender for part acquisition. 
 

3.17.3.2. Robotshop 
 
Another retailer that carries a very large supply of robot parts is the Robotshop. The 
Robotshop is a very well-known supplier for robot parts. The website URL was provided 
in the prompt of this project as a great guide for research and part acquisition. Although 
the Robotshop prices are often not as low as Amazon’s, Robotshop does provide sales 
at certain times of the year, which our team has already taken advantage of. Overall, 
the Robotshop has been our team’s main source of knowledge for researching different 
parts that are currently on the market in our price range. 
 

3.17.3.3. Sparkfun 
 
The third main retailer that we have used to acquire parts for this project is Sparkfun. 
Sparkfun has similar pricing to Amazon, but does not offer free-two day shipping as an 
option. However, Sparkfun has a wider variety of robot parts than that found on 
Amazon. Therefore, we have used Sparkfun for certain parts that could not be obtained 
from Amazon or for parts listed on Robotshop that are priced too high. 
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3.17.3.4. Dimension Engineering 
 
Dimension Engineering has only been utilized for some specific parts that cannot be 
purchased at other retailers. For example, the 5V switching regulator was a piece that 
was specifically developed by Dimension Engineering. Therefore, the only place to 
order this product was on their website. This was the best regulator that was found 
within our price range for the proposed system. 
 

4. Related Standards and Design Constraints 
 
In this section, there are several different standards that will be used in order to make 
this project successful. There are some related standards out in the market, it is 
important to compare these standards in order to be able to prove that the project is 
safe, usable and stable. This section will explore the different types of standards that 
are related to our project as well as discuss the possible design constraints that this 
project may face. 
 

4.1. Standards Research 
 
For related standards research, there are plenty of standards that can be compared to 
this project. In this section, one standard is researched through details and analyzing so 
there is a better sense of how to read and use a standard and a table is provided for the 
other standards that can be researched and used. 
 
The first related standard for our project is an IEEE standard denoted “1873-2015 - 
IEEE Standard for Robot Map Data Representation for Navigation.” One of the methods 
that the battlebot robot in our project will implemented is the use of 2D mapping. 
Therefore, this related standard can be used and compared to the robot project. 
Although this topic is very broad, the standard provides a scope of what exactly is being 
standardized. This standard is used for defining terminologies related to 2D robot maps 
of navigation in indoor and outdoor environments. It also specifies a data model for 
each element and defines a format used to exchange this data among other computers 
and robots.  
 
The importance of this standard is to set a common representation for robot map data in 
a way that can allow an accessible use of software exchange among other robotic 
systems. This standard is used in order to expand the range of application and 
operational use among robots. There is also a section of definitions containing word 
definitions and mathematical definitions in order for the reader using this standard to 
understand the terms being presented as well as define specific words that makes 
following the standard less confusing.  
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There are several tables in the standard, labeled M/O which defines how often a 
variable or element is to be used. M is for mandatory and O is for optional. There are 
also detailed descriptions for how to format the data between the different type of 
mapping such as metric and topological mapping. 
 
The standard then describes the basic mathematical models that shall be used in 
representing an environmental map as robots navigate and then goes into defining 
specific data formats are introduced. There are a lot of graphs and tables to follow, but it 
is important in being able to make 2D mapping definable and if every 2D mapping 
system uses this, the compatibility of sharing this data set among other systems will be 
able to advance forward in the technology.  This standard sets the language for data to 
be transferred among other robot systems with XML. The standard explains that XML is 
a platform-independent language, many operating systems use this language and 
stores the files in human readable format. Table 4.1 contains other relatable standards 
with a scope, the publish date and a short description. 
 

Standard Number Scope Publish date Description  

IEC 62680-1-2 Ed. 
1.0 en:2016 

USB 21 Oct. 2008 Universal serial bus 
interface for power and 
data. 

CISPR 14-1 Ed. 
6.0 b:2016 

International 
Electrotechnical 
Commission 

22 Nov. 2016 Requirements for 
household 
applications, electric 
tools and similar 
apparatus that uses 
DC motors. 

802.11-2007 
 

Wireless 
communications 

12 Jun. 2007 IEEE standard for 
information 
technology, 
telecommunications 
and information 
exchange between 
systems. 

1118.1-1990 
 

Microcontroller 31 Jan. 1991 IEEE Standard for 
microcontroller system 
serial control bus 

P2700/D1.00 
 

Sensors 12 Aug. 2014 Standard for sensor 
performance. 

Table 4.1: Table of related standards and their descriptions 
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Each standard follows the same format as to what needs to be included and 
implemented. After looking through one standard in detail, there are several related 
standards that can be considered and followed in the same manner. Since this project 
contains several features and components that will be used to make the robot functional 
and each component can follow this standard. 
 

4.1.1. Design Impact 
 
The standards researched and found in Table 4.1 above, although relevant, will not 
have a great impact on the overall design of the Nerf-enabled Battlebot system. This is 
due to a number of reasons. 
 
The computer algorithms for autonomous detection will be built upon open source 
libraries such as OpenCV. This means that a bulk of the algorithm development process 
will have already been predefined.  
 
Connections between system components will not go beyond the scope of what has 
been specified in the corresponding instruction manuals – specific pin connections will 
not be altered (regarding the microcontroller) and USB connections will only be plug and 
play (such as the USB connection to the camera). Vision and range finding sensors will 
not need to be adjusted as their default operations should provide sufficient enough 
data for the requirements of this project. 
 

4.2. Design Constraints 
 
There are several design constraints of the robot that played a role in determining the 
project's feasibility. This chapter analyzes each type of constraint that this project may 
contain from each area of the design. These constraints include consumer, ethical, 
environmental, power, weight, economic, time, and safety. 
 

4.2.1. Size Constraints 
 
An important constraint affecting the design of the robot is its dimensions must not 
exceed 3ft x 3ft x 3ft. This is a specification imposed by Lockheed Martin, in order for 
the robot to participate in the Battlebot competition. For this reason, special 
considerations had to be made with the evaluation of electrical components for the 
system. Also, a custom platform was designed by the mechanical team to ensure its 
volume were efficiently used and properly enclosed the components. 
  
Minimizing the dimensions of the robot to meet constraints was a job that began with 
the selection of the electrical components. We had to stray away from choosing 
desktop-sized computers to handle the onboard processing. Components such as the 
motherboard, power source, and hard drive would require an enclosure that would put 
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our robot near the limit. Instead we focused on finding the most powerful SoC (System 
on a Chip) computer that would be a fraction of the size of a desktop. 
  
Another volume saving driven customization was a modification made to the Nerf-
Blasters. The Nerf-Blasters were stripped of their original housing to be included on the 
turret. By stripping the housing off the Nerf-Blasters, and only keeping the bare parts 
needed by the shooting mechanism, the volume of each Nerf-Blaster is reduced by 5 
inches in height and two inches in width. 
 Another component affected by the size constraint was the camera. The camera had to 
be near the guns to facilitate the aiming mechanism, but high enough to capture as 
much of the scene as possible without being blocked. Thus the camera was mounted at 
an elevation of about 20 inches above the ground with the Nerf-Blasters sitting on either 
side.  
 

4.2.2. Ethical Constraints 
 
Ethical constraints apply to this project since there will be a competition between 
multiple groups. The first ethical constraint that must be abided by is to engage in 
friendly combat with other enemy battlebots. This means that any countermeasure used 
to destroy one of the enemy team’s robots can be considered unethical. A few 
examples of this practice could be the use of ammunition other than nerf balls or nerf 
darts, setting the enemy’s robot on fire during the competition, or even purposely 
manipulating the enemy’s robot before the competition. 
 
Another form of a countermeasure that may be considered unethical is somehow 
tampering with the enemy’s capability of sight. This means that blinding the enemy 
robot’s vision may be considered unethical, since the enemy team will not be able to 
demonstrate their working algorithm accordingly. A way to abide by such ethical 
constraints is to leave out any bright lights in the build of the robot so the competition is 
fair for all individual participants. 
 
Since every group participating in this project is being given similar objectives, there is a 
chance that work from other groups will be fairly similar to the work provided by the Red 
Team. Although hearing information from other groups can be considered a fair practice 
in this competition, it would be unethical to copy work directly from another group. This 
can include code developed by an enemy team, research written by an enemy team, or 
even schematics drawn by an enemy team. 
 
As more information is obtained from further research, it is imperative that all references 
and sources found of similar projects, guides, and information relevant to the project are 
cited at the end of this paper. Any information that is left uncited can be considered an 
unethical practice. Such ethical constraints can be considered standard for research 
papers that are developed. 
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4.2.3. Environmental Constraints 
 
The environment is defined as the physical surroundings and conditions that will 
influence the performance of the design.  The environment of this robot will be an 
indoors facility such as a conference room, located on either the premises of Lockheed 
Martin or of the University of Central Florida. The exact environment will be determined 
at a time closer to the competition date due to a possible conflict with the reservation of 
a room. 
  
The uncertainty of the course means it is necessary to develop a robot capable of 
operating smoothly under different conditions. Conditions such as flooring can have an 
effect on mobility of the wheels, and accuracy of the encoders. Different sets of lighting 
can affect the vision algorithms which are based on tuning parameters to pixel intensity 
values. 
  
Another condition set for the competition is that each robot must stay within the confines 
of its designated zone. The designated zones of each robot is a rectangular 10ft x 20ft 
perimeter set on opposite ends of encompassing 40ft x 20ft rectangular perimeter. 
Between the two zones is an obstacle zone, where robots are docked points for 
crossing into. This has influenced about every main component. The camera had to be 
chosen to provide a clear image of objects that would be meters in distance away. The 
Nerf-Blaster’s shots had to travel ranges without dropping. The range detector would be 
used to determine the likelihood a detected target is in an expected zone and not within 
its own zone or outside of the course. 
  
A condition set by Lockheed Martin is to have live video of the robot’s point of view, with 
overlay of the automated target detection. This absolutely had an influence on our 
setup. Specific solutions had made just to transmit this amount data wirelessly, taking 
into account that an internet connection would not be made available to us. An 
important factor we must look out for is the possible interference between the wireless 
transmission protocol chosen and nearby electrical devices or the opponent's robots 
wireless transmitter.  
 

4.2.4. Power Constraints 
 
As this Nerf-enabled battlebot will be used in competition against other battlebots for 
two rounds, each ten minutes long, it is important to supply the battlebot with enough 
power to run the full duration of each round. 
 
While it may not be necessary to provide the robot with a power supply strong enough 
to last two consecutive rounds (or 20 minutes), it would be beneficial to place the power 
supply in an area that is easy to access and modify. In this manner, the battery could be 
swapped out in-between rounds, reducing the minimum power usage length by 50% or 
ten minutes. 
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The weight and size of the power supply is also a limitation. It must be light enough for 
the chassis of the robot to support so that the robot can move about and do so without 
also wasting power. Depending on how power is regulated, additional power could be 
drawn to the motors controlling the wheels if the wheels need more torque in order to 
move the robot’s own weight. The power supply must also be small enough to fit the 
size constraints of the robot. 
 
Positioning of the power supply is another factor to consider. The power supply unit 
must be placed on the robot in a such a way that it does not obstruct other components 
and/or wiring. It would pose a threat if the power supply was restricting the movement of 
a mechanical component (e.g. a rotating platform for the camera). It may also be 
necessary (if heating becomes an issue) to provide spacing enough for an open area to 
account for any possible heat transfer methods such as open airflow for a fan and 
heatsink.  
 

4.2.5. Weight Constraints 
 
One of the constraints that the team decided to follow for this project is to consider the 
weight of the robot. Listed in section 2.3, there are requirements listed for both size and 
mobility of the proposed system. The size constraint, S1, states that the robot 
dimensions shall not exceed 3ft x 3ft x 3ft. Keeping this size in mind while also 
considering requirement M1: being able to remotely control the Battlebot, it is very 
important that weight becomes a constraint to be considered throughout the course of 
the proposed system’s design. 
 
Weight indeed becomes a constraint for both extremely light and heavy designs. 
However, for the proposed system, it is more likely that a heavy weight limit will be a 
more pressing concern. If the robot is too heavy, the mobility of the robot may be 
sacrificed. The robot may not be able to move and dodge enemy attack with weight 
slowing down the robot’s movements. The robot’s weight may affect the motor’s ability 
to move the robot. More power may need to be drawn in order to successfully move the 
motors at the speed necessary to move the system. 
 
The proposed system’s overall weight is not the only concern that must be considered. 
There are constraints as to the equal distribution of weight throughout the proposed 
system design. If the system does not have an equal distribution of weight, certain parts 
of the system become more vulnerable. This may lead to the robot tilting a certain way, 
or even cause the robot to topple over. With the scope of this project being showcased 
at a competition, there leaves little room for error of weight design flaws in the system. 
Weight for every component then becomes a major consideration as well as where 
these components are placed throughout the proposed system. 
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The equal distribution of weight does not only apply to the Electrical team’s components 
and where they are placed. Major consideration must be done as to how the Mechanical 
team decides to design the robot. If a certain part is their design is already equally 
distributed, the Electrical team may not be able to place a component where originally 
desired. One the other hand, if a certain part of their design is not equally distributed, 
there may need to be considerations done as to whether the Electrical team should 
change its original placement of a sensor or whether the Electrical team should move 
their part to compensate for the unequal distribution of weight. 
 
Overall, every part of the proposed system’s design has weight constraints that must be 
considered in order to build a successful system. Every piece must have its weight 
taken into consideration for an organized approach to solving the proposed system’s 
presented problem. Without such considerations being taken into play, the system could 
have mobility issues, could potentially topple over, or could suffer from lack of an equal 
distribution of weight. Weight is one of the crucial constraints that cannot be ignored 
throughout the course of this project, since it is one of the leading forces that affects 
development of the project design. 
 

4.2.6. Economic and Time Constraints 
 
The battlebot will span a design and development time of about 30 weeks - from 
September, 2016 to April, 2017. This is calculated from the length of a typical school 
semester whereas this project will span two semesters inclusive a one month break in 
between.  
 
Within this timeframe, the battlebot will need to meet other time constraints, such as the 
competition between all involved teams and their battlebots as was the intent of the 
sponsor, Lockheed Martin. This competition is undated, but is assumed to be set for 
early April. It is also around this time that the project will need to be presented to the 
school panel for an assessment of the project design and performance and if it is worthy 
enough to pass the Senior Design course. 
 
Financially, the sponsor has limited project expenses to a maximum of $2,000 of which 
only $1,000 can be used for the final battlebot design. This leaves at least $1,000 
towards component backups and testing. 
 

4.2.7. Safety Constraints 
 
Since the robot will be showcased at the competition and at the senior design fair 
following the project’s development, there are certain safety constraints the Red team 
members must abide by in order to ensure that the robot will not be harmful to 
individuals interacting with it. 
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One safety issue that will be considered is the possibility of the robot firing at individuals 
as soon as the robot is turned on. In order to compensate for this issue, a safety 
constraint will be put in place that will allow the user to switch the robot between a 
“friendly” mode and an “attack” mode. The “friendly” mode will allow the user to 
manually navigate the robot without using the autonomous aiming, firing, and detecting 
features that will be present on the robot. This will ensure that when showcasing the 
robot, others will not be harmed. 
 
Another safety issue could be using hazardous materials in the design of the system. 
This can include using an ammunition other than nerf darts or balls, sharp objects 
present on the robot, or not doing proper checks for faulty wiring. It is important that all 
team members abide by these constraints to prevent harmful interaction with the user. 
This will ensure that the robot can be used appropriately for its intended purpose within 
the scope of this project. 
 
While choosing a laser rangefinder, it is important to keep in mind safety concerns that 
may arise. Some laser rangefinders can be damaging to the eyes, so it is important to 
make sure that these rangefinders are not pointed directly at someone’s face. However, 
the rangefinder chosen for this project, Lidar Lite 3, has a protective capping that may 
prevent such damage to one’s eyes. Therefore, individuals participating in the project do 
not have to worry during testing and individuals that will be interacting with the final 
product will not be harmed. 
 
With the proposed system firing off many rounds of both nerf balls and nerf darts, it has 
been decided by Lockheed Martin that protective eyewear should be worn throughout 
the competition. All team members will need to utilize this protective eyewear in order to 
ensure safety among each group. This will prevent any stray nerf balls or darts from 
coming into contact with one’s eye, which may cause serious lifelong damage as a 
result. 
 

5. Hardware Design 
 
Chapter 5 contains the procedure for the hardware design necessary to power and 
operate the robot. It is separated into different subsections that will cover the power, the 
microcontroller design, the sensors, the turret and various motor shields that will be 
used. 
 

5.1. Power for Preliminary Design 
 
Power is the most important factor of the robot. Without power, the robot will not be able 
to detect objects, navigate around the field or fire the Nerf-blasters. The entire robot is 
planned to be powered by a single 12V battery. Therefore, the power must be able to 
distribute to all the different components of the robot. There are motors that will need 
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direct power from the battery while some sensors will be powered through the 
microcontrollers and Raspberry Pi. 
 
The following components that will need to be powered by the 12V is found in Table 5.1. 
Powering Components. This table shows the component that needs to be powered with 
power consumption specifications.  
 

Component Quantity  Current 
(A) 

Operating 
Voltage(V) 

Mostly 
Off/On 

Power(W) 

Microcontroller 2 0.0465 5 ON 0.466 

DC motors 4 1.1700 12 OFF 57.60 

Stepper Motors 2 1.7000 3 OFF 10.2 

Servo Motor 1 2.0000 6 OFF 12 

Nerf-blaster 2 - 6-9 OFF - 

Raspberry Pi 1 1.2000 5 ON 6 

Total Maximum Power 86.266  

Table 5.1: Powering Initial components 
 
The total maximum power is if everything in the robot was turned on at once. There are 
no indications or planning where everything will need to run at once but this is for 
consideration how much battery power the robot will require to run a total of two 10 
minute rounds. 
 
Since the battery is 12V and some components only require a lower voltage, there will 
be a use of voltage regulators to step down the voltage. The use of fuses and diodes 
will also help in preventing overloading the components as well as preventing voltage 
feedback into the power supply. 
 
Figure 5.1 shows a diagram for the power flow that will be used to make sure each 
component can share and use each power safely and with stability. The 12V battery will 
be connected to each device so a high mAh rating will be used to ensure the system 
can stay running for longer than 20 to 30 minutes without charging.  
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Figure 5.1: Power Flow diagram 

(Team Designed) 
 

5.2. Power for Final Design 
 
As components changed from the preliminary design of the robot, so did the power 
distribution calculations. In order to select a battery for the proposed system, it was 
important to find the right capacity that would power all of the components at the correct 
ratings. Table 5.2 lists the power calculations for the final design of our system. 
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Component Quantity  Current 
(A) 

Operating 
Voltage(V) 

Mostly 
Off/On 

Power(W) 

Microcontroller 1 0.0465 5 ON 0.23 

DC motors 4 4.800 12 OFF 57.60 

Stepper Motors 2 1.7000 3 OFF 10.2 

Nerf-Blaster (B) 1 1.5000 6 OFF 9.0 

Nerf-Blaster (D) 1 1.5000 9 ON 13.50 

Jetson TK1 1 2.5000 12 ON 30.000 

LIDAR Lite 1 0.130 5 OFF 0.65 

Total Maximum Power 110.98 

Table 5.2: Powering Final components 
 

Most of the current draw  from  our system comes from the  DC motors that are used for 
manual navigation and the pan and tilt of our turret system. Therefore, to provide 
sufficient amount of current, a sealed lead acid battery was chosen. Sealed lead acid 
batteries contain the best chemistry type for high current and does not require complex 
charging. The downside to the sealed lead acid battery is its heavy weight and bulky 
size which was accommodated for the design. In order to calculate the right battery 
capacity, Equation 5.1 was used. Therefore at 12V, 5aH this battery will be able to last 
for 15 minutes per full charge only costing the project $15 per battery.  
 

Battery Life = [Battery Capacity(mAH) / Load Current(mA)] * 0.70 
Equation 5.1: Battery Life Equation 

 
Although one battery is enough to power the entire system for the length of the 
competition, the final design features two batteries for testing and demonstration 
purposes. One battery is used solely for the DC motors, which takes up most of the 
current draw from our system. The other battery is used for the rest of our components, 
including but not limited to our PCB design, the Jetson TK1, and the Nerf Blasters. 
Many switches were added to the system to minimize power consumption during testing 
from components with high Wattage. Also, the switches added convenience to the 
system, allowing components to be powered on and off quickly and efficiently. 
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5.3. Microcontroller 
The microcontroller is the main central processing unit and will be able to communicate 
with other components. The robot’s rangefinder, motors, and Nerf-blasters will be 
controlled through one microcontroller board. This section will go through the design 
and pinout of the ATMega328p chip 
 

5.3.1. ATMega328p 
 
The Atmel ATMEga328p is a 28-pin microcontroller with 20 I/O. There are 14 digital 
pins for input and output pins, which 6 of them are pulse-width modulation pins and 6 
analog pins for input. Figure 5.2 contains the full pin out diagram for the 
Atmega168/328p microcontroller.  
 

 
Figure 5.2: ATmega168/328 pin mapping  

(Permission Granted by Arduino) 
 
In order to supply power to the chip, Pin 7 also known for VCC will be connected from 
the main power supply using a voltage regulator. To supply a clock crystal to the device, 
the clock crystal will be connected between pin 9 and 10 using 22pF capacitors for 
stability. A tactile switch will be connected to the reset pin, PC6. There will be LEDs 
connected to the power and to pin 19 for debugging and troubleshooting to make sure 
the chip is powered properly. Table 5.2. Contains the label value of each pin and what 
component will be connected to the respective pin. This project is using two 
microcontroller chips with the same pin out configuration. This table assigns each 
component to a pin of the chip and will distinguish which microcontroller will go with 
which component. 
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Component Number Microcontroller Number Pin Numbers 
(I/O, PWM) 

DC Motor 1 1 PD2, PD3,  

2 1 PD4, PD5 

3 1 PD7, PD6 

4 1 PB0, PB3 

Encoder 1 2 PD2 
PD4 

2 2 PD7 
PB08 

3 2 PB4 
PB5 

4 2 PB3 

LIDAR Lite 1 2 PC5 

Nerf-blaster 1 2 PB5 

2 2 PB4 

Table 5.3: Pin assignment of each component 
 
The DC motors, stepper motor and servo motors all require a PWM pin and will not be 
directly connected to the microcontroller. Since each pin can only supply up to 500mA, 
the motor controllers will be used to drive each motor. The pinout to the microcontroller 
will still be the same, but the current and voltage will be supplied by the motor 
controllers. Lastly, for communication between other microcontrollers and for general 
programming, the ATMega328p will use a USB to serial breakout board and will receive 
power from the same VCC pin. The RX pin of the USB breakout board will connect to 
the TX pin of the microcontroller. The TX pin of the breakout board will be connected to 
the RX pin of the microcontroller. All components are expected to share a common 
grounding pin. 
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5.4. Microprocessor 
 
The microprocessor will be used for object detection, image processing, and other 
computing algorithms for the robot and for controlling the robot’s camera sensor. 
 

5.4.1. Raspberry Pi 3 Model B 
 
The Raspberry Pi 3 was originally the main unit for the automated object detection and 
image processing. The hardware required for the Raspberry PI to operate is an SD card 
with a preprogrammed operating system, external power supply connection, and a USB 
cord for communication between the microcontroller. The camera was to be connected 
to the Raspberry Pi through USB. 
 
Figure 5.3 shows the full pinout for the Raspberry Pi 3 GPIO header is at full disposal in 
case more sensors or components will need to be added.  
 

 
Figure 5.3: GPIO pinout for Raspberry Pi 3 

(Request Pending from Element14) 
 

 
5.4.2. NVIDIA Jetson TK1 
 
The final design for the nerf-enabled battlebot uses an NVIDIA Jetson TK1 board 
dedicated for computer vision processing and sending control signals to the 
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microcontroller through Bluetooth, mainly manual navigation input and detected target 
coordinates. 
 
The TK1 comes with 192 GPU CUDA cores and 2GB of RAM, of which are an 
importance for this robot because of the heavy image processing that it does. This is a 
vast improvement over the hobbyist level microprocessing board that was previously 
chosen, the Raspberry Pi, which in most cases is found to have a visible delay between 
image processing and a physical response. 
 
The TK1, for the purposes of this robot, will not be used for its pinouts because the 
microcontroller will already be connecting all the other components. This also reduces 
the strain on the TK1 so that all of its resources will go to the computer vision 
algorithms. The added benefit is that failure of the TK1 will not cause failure of the entire 
system as other devices are capable of controlling the embedded robotic system. 
 
This NVIDIA board is capable of consuming a large amount of power from the batteries 
as it is rated for 12V and 4.8A. 
 

5.5. Sensors 
 
The two types of sensors to be used for this project are the camera module and a range 
finder. These two sensors will be integrated into our chip since due to the time and 
money constraint, will not be designed by hand. This section explains how these two 
devices will be connected to the microprocessor as well as how each sensor can be 
mounted to the robot. 

5.5.1. Lidar-Lite Laser Rangefinder 

The Lidar-Lite Laser Rangefinder is simple to integrate to the robot system. To connect 
the Lidar-Lite to the ATMega328p chip, there is a 6 wire cable connector. Each pin of 
the cable connector contains a value. Table 5.3 shows the pin with the corresponding 
name value. 
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Pin Name Connection 

1 Ground GND 

2 SDA PC5 

3 SCL PC4 

4 Mode - 

5 Power Enable - 

6 5V 5V Input 

Table 5.4: Pinout for LIDAR-Lite 
 

The pinout required for the LIDAR to communicate with the ATmega328p, pin 2 and 3 
will be connected to two analog pins of the chip. Pins 1 and 6 will be connected to 5V 
power supply. The pins will be soldered into male jumper cables to avoid any of the 
wires from slipping out of the nodes of the microcontroller. The LIDAR will be mounted 
between the two Nerf-blasters to ensure precise range is captured. This way the Nerf-
blasters will be able to fire the ammunition in the same direction. 

5.5.2. Logitech HD Pro Webcam 

The camera module will be mounted on the servo motor and will move independently of 
the turret and robot’s turning directions. This is so that the camera can have sight of the 
targets at all times during the competition. The camera utilizes a USB cord which will be 
connected to the Raspberry Pi with pre-installed drivers to support it. 

 
5.6. Aiming and Transportation 
 
This section will be discussing the strategies of the movement of the robot and how the 
robot will be able to position the Nerf-blasters to fire upon targets. The robot will be 
utilizing motors to be able to move the Nerf-blasters in position to fire at targets, both 
moving and stationary. The following subsections go into details of how each will 
function. 

 
5.6.1. Preliminary Design 
 
The preliminary design section discusses the initial draft design of the battlebot’s firing 
and manual navigation system. 
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5.6.1.1. Turret 
 
In the initial draft of the battlebot it was decided to use stepper motors for the turret 
system: 
 
“The turret will be driven by the two stepper motors for lining the Nerf-blasters at targets. 
The Nerf-blasters will be placed parallel to one another facing the same direction. With 
the two stepper motors, the first stepper motor will be placed so it can rotate the Nerf-
blasters about the horizontal axis. The other stepper motor will be placed so it can 
elevate itself about the vertical axis. This allows a 2D frame for the Nerf-blasters to be 
aimed given the coordinates from the software. The Turret will be responsible for 
holding the extra ammunition that will be mounted on the Nerf-blasters in order for it to 
fire.” 
 
This did not fare well in testing because of the actual weight of the turret system and the 
power that could be supplied through the stepper motor drivers.. 
 
To fix this in the time remaining for the project completion date, the stepper motors and 
drivers were swapped with the extra two DC motors that were originally cut because of 
budget. This process is highlighted in section 5.6.2.1. 
 

5.6.1.2. Movement 
 
The original manual navigation system called for 4 DC motors to drive the battlebot: 
 
“The robot will need to be able to move across the field to scope out for targets to fire 
upon. There are maybe ways to drive a robot using 4 DC motors. The simplest and 
efficient design is to allow the four DC motors to be paired into pairs and implement a 
tank drive. This is done by driving one pair of wheels at the same speed and rotation 
and driving the other pair at the same speed. When it comes down to turning or rotation, 
one pair of wheels will move together in a different speed while the other pair will drive 
in an alternative speed to create the rotation.” 
 
Modifications to this movement system are highlighted in section 5.6.2.2. 
 
Figures 5.4 - 5.5 shows a visual example of how the robot’s tank drive would have 
worked. 
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Figure 5.4: Forward and Reverse Drive 

(Team Designed) 
 

 
Figure 5.5: Left and Right Drive 

(Team Designed) 
 

5.6.2. Finalized Aiming and Transportation 
 
This section discusses the Nerf-enabled battlebot’s final firing and manual navigation 
system. 
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5.6.2.1. Turret 
 
As previously stated in section 5.6.1.1, the turret system switched from using two 
stepper motors to using two DC motors. The stepper motor drivers could only supply 
half of the rated power consumption of the stepper motors and therefore they could not 
compensate for the weight they were handling. Because of time constraints, it was 
faster to replace the stepper motors with DC motors than to wait on shipment of new 
stepper motors and drivers from the vendor. 
 
DC motors, however, are not as accurate as the stepper motors. Luckily, the DC motors 
come equipped with individual encoders, thus effectively making them act as stepper 
motors. To do this, a compatible DC motor controller was used, the HiTechnic DC Motor 
Controller. The DC motors and their encoder cables attach directly to this motor 
controller. Then, the DC motor controller is connected to the microcontroller’s analog 
pins A4 and A5 (the I2C ports) where heavy software development was implemented to 
get accurate position control of the motors. 
 
This controller was able to provide enough power to the DC motors so that they could 
move the turret system as flawlessly and as effortlessly as what was imagined with the 
original stepper motors.  
  

5.6.2.2. Movement 
 
Because of budget constraints due to upgrading the microprocessor from a Raspberry 
Pi to an NVIDIA Jetson TK1, a price increase of over $100, it was decided to remove 
two of the DC motors from the navigation system and replace them with simple caster 
wheels. The remaining two DC motors would move the battlebot using a differential 
drive method. To move backwards or forwards, both DC motors will turn in the same 
direction whereas turning left or right requires turning both DC motors in opposite 
directions (one forward and the other backward and vice versa). 
 
This method balanced the budget at the cost of a lesser accurate navigation control. 
 

5.7. Nerf-Blasters  
 
The final step in the algorithm are the Nerf-blasters firing at stationary and moving 
targets. The two Nerf-blasters of choice will be stripped from its original case to properly 
mount onto the chassis of the robot. All the battery packs will be removed and 
connected to the main power supply. Each Nerf-blaster is operated with a pull of a 
mechanical trigger. Since these Nerf-blasters will need to be fired automatically, they 
will be taken apart and examined for the main switches that turn on the power to the 
blaster to fire nerf darts. Figure 5.6 shows the insides of a Nerf-blaster revealing all the 
mechanical parts and electrical wiring.  
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A Nerf-blaster consists of many parts both mechanical and electrical. If the user of the 
Nerf-blaster holds down the trigger of the blaster, the blaster will connect the circuit that 
allows the battery to connect to the motor and shoot the darts in multiple rounds until 
the magazine runs out of ammo. Therefore, the plan is to open up each Nerf-gun and 
discover what turns on the blaster and how to modify that to do so digitally.  
 
Most Nerf-blasters contain a motor that drives the Nerf-darts through the chamber of the 
blaster and reloads the next dart into the barrel. If the mechanical trigger is pulled, the 
motors will activate by using the power of the battery to allow the mechanism to flow 
through.  
 
 

 
Figure 5.6: Inside of a Nerf-blaster 

(Team Supplied) 
 

Figure 5.7 shows a switch that sends the voltage to the firing mechanism to release the 
dart. This blaster has several mechanical switches that must closed for the blaster to 
fire the darts. The final switch that completes the full circuit is manually set on through 
the trigger of the Nerf-blaster. Since the robot must be able to also fire the Nerf-darts 
autonomously, the mechanical switch will need to be connected an I/O pin on the 
ATMega328p and will be programmed to fire. Although in order to achieve this feat, a 
MOSFET switching device will need to be implemented to turn on the Nerf-blaster and 
fire the darts. 
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Figure 5.7: Mechanical switch of Nerf-blaster 

(Team Supplied) 
 
This mechanical switch in Figure 5.7 will be removed and replaced to operate digitally. 
The most common use of a digital switch in consideration are MOSFETs, which use 
voltage to control the voltage of another source (an example circuit is seen in Figure 
5.8). The MOSFET gate source will be connected to a digital pin of the ATmega328p 
microcontroller and will allow the robot to remotely and automatically fire the Nerf-
blaster. 
 

 
Figure 5.8: MOSFET as a switch 

(Permission Requested from Electronic Tutorials) 
 

This will allow easy programming for the Nerf-blasters to be fired from a digital voltage 
input. If the I/O pin is set to off, the Nerf-blaster will not be able to complete its circuit. As 
the MOSFET receives signal from the I/O pin, this will allow the switch to close, 
powering on the Nerf-blaster. The way the only way to turn off the Nerf-blaster from 
firing is if the I/O pin no longer sends a signal. 
 
Another design idea for firing the Nerf-blasters digitally would be the use of a relay 
switch circuit. These devices are electromechanical and use an electromagnet that can 
operate a switch to open and close physically. It would only take a small amount of 
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power to operate the relay coil and could be used to control things such as motors, 
lamps or AC circuits.  
The most common type of relay switch driven by a NPN transistor switch. Like most 
transistors, if there is no current supplied to the transistor, the circuit is an open switch 
and will not connect the power. Once the current and voltage is supplied to the 
transistor, the circuit will connect causing a flowing current from the battery to the 
component needed for powering.  
 
With this device, it will be possible to controller the Nerf-blasters with a transistor and 
allow the output pins of the microcontroller to turn on and off the Nerf-blasters. The 
microcontroller will be programmed through the code and will be able to digitally 
connect the power of the Nerf-blasters to the firing mechanisms. 
 

6. Software Design 
 
The following Software Design section discusses the input and output, or dataflow, of 
the selected processes and components for each subsystem. This section also 
discusses how each subsystem communicates to come together as a whole battlebot 
system. 
 

6.1. High Level Software System Architecture 
 
In Figure 6.1, a software breakdown of the system components is visualized at a high 
level. This system is broken down into the subsystems: object detection and firing, 
panning and tilting control, navigating the robot, input and output data from the user, 
and processing via the microprocessor and microcontroller.  
Discussion of these subsystems will not be as straightforward as they are illustrated. 
There are several data connections that will be webbing back and forth as certain 
components may have roles in multiple subsystems. For example, wireless remote 
control input from a user device, such as a laptop, will need to go through the 
processing subsystem before it reaches the manual navigation subsystem wherein the 
movement feedback from the encoders will be sent back to the processing subsystem 
for analysis. 
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Figure 6.1: High Level Software Diagram 

(Team Designed) 
 

6.1.1. Modes of Operation 
 
To prevent the battlebot from attempting to target allies (by facial detection) immediately 
after being placed on the field and powered on or during repairs, two modes of 
operation will be configured - interchangeable by the push of a button - Targeting Mode 
and Neutral Mode.  
 
Therefore, the high level architecture model found above in Figure 6.1 is true only when 
the battlebot is in Targeting Mode. This targeting mode is to be the primary mode of 
operation, where all aspects of the robot are fully functional. 
 
The other mode of operation is to invoke a more neutral functionality of the robot. Only 
some subsystems, mainly the navigational system, of the robot will be running during 
startups, repairs, or other reasons, perhaps for defensive tactics to conserve power. 
Figure 6.2 presents the subsystems that will be active in Neutral Mode.  
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Figure 6.2: High Level Software Diagram in Neutral Mode 

(Team Designed) 
 

6.2. Software Development Life-Cycle 
 
After much consideration for what type of Software Development Cycle is best for this 
project, it was decided that the Agile Development Life Cycle will be used. As opposed 
to traditional software development approaches, the Agile method consists of multiple 
iterations of analysis, design, development, and testing. Initial planning is kept generally 
high-level in order to allow for more iterations of the Life Cycle process. 
  
Figure 6.3 below highlights the key stages of the Agile Method. Each iteration could last 
anywhere from a week to a few weeks at a time. These iterations can occur any number 
of N times, which allows for constant updating of the system until the final product must 
be delivered. 

  
Figure 6.3: Agile Development Life Cycle 

(Team Designed) 
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The reason the Agile method was chosen as the best software approach for this project 
is because the Electrical team will be working with two other groups; the Computer 
Science team and the Mechanical team. The Agile method allows the Electrical team to 
account for necessary changes that may occur throughout the course of this process. It 
also allows for constant up to date information between all group members in each team 
discipline. 
  
A great example as to why the Agile method has been chosen for this project involves 
all members from each discipline. To explain, if the Mechanical team decides to change 
a specific part in their design that may affect the way the Electrical team chooses to 
program the Nerf-blasters, it will be imperative to make necessary changes to the 
proposed system as quickly as possible. This change may also affect the Computer 
Science team’s algorithm which indeed can change the system design immensely. By 
constantly providing new software to ensure the system is constantly up to date for all 
team members is the best approach for this given project. 
 

6.3. Sensor Processor 
 
This section, Sensor Processing, will detail the setup that is required for the sensors. To 
explain in further detail, the data flow of the sensors readings is graphically displayed in 
Figure 6.4. 
  
The Logitech C920 webcam will be plugged directly to the USB port of the Raspberry 
Pi. The C920 is a plug-and-play device, therefore it will automatically be recognized by 
the Raspberry Pi, assuming the operating system installed is Raspbian Jessie. The 
camera will be available to any Python code that needs to access it. 
  
The Logitech C920 is a 15-megapixel webcam that is capable of recording video at 
1080p. If this resolution proves to be too much for the system to process in real-time, 
we may need to downgrade it. Lowering the resolution can be done different ways. One 
way it can be done is through the terminal. Installing the fswebcam package on the 
Raspberry Pi allows us to access the device driver and directly specify the resolution. 
Another way of doing is through the OpenCV Python function VideoCapture. You create 
a “VideoCapture” object to receive video from the default camera. Then you can call the 
class method “Set” on the VideoCapture object with two arguments. The first argument 
is a flag to set the horizontal frame size with CV_CAP_PROP_FRAME_WIDTH, or 
vertical frame size with CV_CAP_PROP_FRAME_HEIGHT. Then the second argument 
takes an integer value as the resolution size. 
  
Once the camera frames are being received they will each be analyzed by the 
autonomous target detection pipeline. With the camera feed alone, the system will not 
know its position in the field nor the distance to the objects detected. Therefore, the 
range finders and encoders must be frequently polled too. 
  



 

94 
 

The range finder we will use is the Lidar Lite v3. It will either be read as input directly by 
the Raspberry Pi or indirectly with the Arduino playing the middle role. The Lidar Lite 
can be interfaced via Pulse Width Modulation (PWM) or I2C interface. Using the Lidar 
Lite v3 Arduino library we can call the Lidar with a line of code. If the LiDAR is interfaced 
via PWM, then we can call GetDistancePWM() to read its distance measurement. If 
instead it is interfaced via I2C, then we simply change the call to GetDistanceI2C(). 
  
The last sensors we will use are the encoders embedded on the wheels. To read the 
encoders we will simply need to ensure the pins they are connected to are set as inputs. 
To do this we can use the Arduino function pinMode(). With the encoders pins set to 
inputs we can then use the digitalRead() function to take measurements.  
 
Though the Raspberry Pi needed to be swapped for the Jetson TK1, the sensor fusion 
stayed the same. The Jetson TK1 used USB to interface with the camera, and the 
microcontroller interfaced with the LIDAR-Lite. The Jetson TK1 uses Ubuntu 14.04 and 
OpenCV packages to read frames from the camera.  
 
 

 
Figure 6.4 Data Flow of Sensors 

(Team Designed) 
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6.4. Autonomous Detection 
 
It has been decided that the autonomous detection for this project will be carried out 
based on concepts of computer vision. Although the Electrical team will not be 
responsible for the autonomous detection of the proposed system, the Computer 
Science team’s autonomous detection drastically impacts the programming that needs 
to be carried out by the Electrical team regarding input and output from different devices 
and the moving parts of the robot. This section will briefly discuss the basic concepts 
that will be carried out by the Computer Science team as well as how these aspects will 
affect the Electrical team’s coding plan. 
  
The first concept that must be considered regarding the autonomous detection of the 
proposed system is the different aspects that will be present on the given field. An 
important aspect of the field to remember is that there will be both stationary and 
moving targets that must be autonomously targeted. Another aspect of the course will 
be the obstacles that must be avoided when shooting at a target. Since not all 
information of the course has been provided, the solution to the proposed system’s 
problem becomes more intricate. In order to solve the proposed system’s problem of 
being able to detect, aim, and fire at stationary targets and moving enemies, there will 
be multiple autonomous detection algorithms combined. The main algorithms that will 
be used to program the autonomous detection of the robot will deal with object 
recognition, motion detection, and facial detection. 
  
The Computer Science team plans to use object recognition as a means to recognize 
certain features from the enemy robot’s design and use these features in order to 
identify that object. Based off a database that already contains data, this data will be 
matched to the features being obtained from the camera. The information provided by 
the camera sensor will be programmed to match with the information provided in the 
database. If the objects are similar, the Nerf-blaster will be able to recognize the object 
as a “friend” or an “enemy”. 
  
Another key development in the programming of the robot’s autonomous capabilities will 
be motion detection. Motion detection will allow the robot to find any object in motion 
within the frame of the camera. This will be a major aspect of the system’s performance, 
since all the objects that will be in motion during the competition will be enemies. As the 
system identifies whether an object is in motion, it will be able to label an object an 
enemy automatically if that object is found to be in motion. 
  
The final factor that will play an important role in the development of the autonomous 
capabilities of the proposed system its ability to use facial detection. Facial detection will 
be a major aspect in the design of the robot because information has been released that 
the stationary targets will have faces on them. With the robot being able to detect faces, 
the robot can automatically label this object as a stationary “enemy”. Thus, the 
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Computer Science team will ensure that facial detection is a crucial aspect in their 
programming design of the proposed system. 
  
The current plan for programming autonomous detection for the proposed system has a 
great impact the Electrical team’s decisions of the robot’s design and functionality. The 
image processing will be done through the Raspberry Pi, as the camera will be directly 
connected to the Pi. The Electrical team will be in charge of sending the output from the 
camera to the Raspberry Pi. The Electrical team will also be in charge of sending input 
to the motor controlling the camera so the camera will pan. This will allow the proposed 
system to search for these objects that will be recognized by the Computer Science 
team’s algorithm. 
 
After some algorithm development it was decided the Raspberry Pi processing was not 
sufficient therefore the single board computer was upgraded to a Jetson TK1.  

 
6.5. Manual Navigation 
 
As mentioned in section 3.15, the programming regarding manual navigation of the 
proposed system relies heavily on how the data from the motors will be sent to the 
controller. It has been decided that a laptop will be used as the main source of 
controlling the navigation of the robot. As a secondary source, a separate controller, 
such as an Xbox controller, may also be programmed if it is possible during the time 
given to complete this project. Both controls will be operated wirelessly in order to 
complete a requirement given by the competition and to also allow for optimal use of the 
robot in battle. 
 
Since different means of how the robot can wirelessly communicate with the laptop 
have been explored in section 3.15, it has been decided that the robot will preferably 
connect to a local network via a router in order to establish a connection with the laptop. 
This proves to be the most optimal option, since this allows for a sufficient range as the 
robot will be in the same room as the router and laptop during the course of the 
competition. This will also provide a reliable way of transmitting the live video feed to the 
laptop while being able to manually control the robot at the same time. 
 
A program will be developed by the Computer Science team to house both the controls 
for the manual navigation and the video stream for the robot. The Electrical team will 
provide adequate connection from the motors to the PCB, which will house an Arduino 
chip used for processing the data for the manual navigation. Once connection has been 
established, the Electrical team will program the Arduino to control the motors.  
 
The Arduino will send all the data to the Raspberry Pi in order to establish connection to 
the laptop and allow the Computer Science team to use a python program to interface 
with the data. If preferred, the Arduino may instead establish its own connection to the 
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laptop if proven to be a better strategy for the proposed system. Finally, the Electrical 
team will be able to control the robot’s movements wirelessly via the arrow keys or the 
WASD keys on the laptop for intuitive controls. 
 
The first consideration for establishing manual navigation is the libraries that may need 
to be imported when transferring the data from the Arduino to the Raspberry Pi. It is 
likely that there will be a serial communication between the Raspberry Pi and the 
Arduino by simply connecting the two via a USB cable. One way to send the data from 
the Arduino to the Raspberry Pi is by simply importing the serial library to both the 
Arduino and the Raspberry Pi to assist in the transfer of the data. By calling the serial 
library and reading each line of data, the code written to the Arduino for the manual 
navigation can be transferred to the Raspberry Pi which will connect wirelessly to the 
laptop using a local network connection. 
 
The Jetson TK1 wound up being the core processing unit used. There was serial 
communication with the microcontroller, like mentioned before with the Raspberry Pi but 
it was done using a Bluetooth HC-06 module. 
 
Generally, four main functions will be established to control the direction of the robot. 
These functions are as follows below: 
  

● void forward();  
● void backward();  
● void left (); 
● void right (); 

 
As one would assume, void forward() will provide forward movement of the proposed 
system, void backward() will provide backwards movement, void left() will provide 
movement to the left, and void right() will provide movement to the right. Other functions 
to consider could be a void setup() function or a void stop() function that will provide a 
general means of initializing certain devices required for manual navigation and allow 
the proposed system a safe and effective way to stop during the competition. The 
diagram in Figure 6.5 explains how these functions will be implemented in the proposed 
system. 
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Figure 6.5: Manual Navigation breakdown 

(Team Designed) 
 
Defining output pins for the motors in the code will be extremely important to allow for 
successful manual navigation. These defined pins will give the motors the commands 
written in the functions mentioned above, allowing for the motors to be able to respond 
accordingly. Not only do the pins for the motors themselves need to be defined, but the 
pins for the motor drivers will need to be connected to the PCB for a smooth transition 
to the motors.  
 

6.6. Nerf-Blaster 
 
The programming of the Nerf-blaster and its movements are crucial to the functionality 
of the proposed system. The Computer Science team will be in charge of programming 
the Nerf-blaster to point and shoot in a specified direction autonomously. The Electrical 
team will oversee programming the motors to pan and tilt the Nerf-blaster as well as 
programming the Nerf-blaster to fire. This section will highlight the Electrical team’s 
software plan for controlling the Nerf-blaster’s direction and the Nerf-blaster’s ability to 
fire. 
  
Since there will be two Nerf-blasters for the proposed system, each blaster will be 
programmed accordingly to fire independently of one another. Even though the two 
Nerf-blasters will be able to fire at different times, the same motors will control the 
position of each blaster; one motor to pan and one motor to tilt. The two Nerf-blasters 
will be programmed to pan and tilt simultaneously to aim at a specified target. It has not 
been decided when each Nerf-blaster will fire. One idea that may be implemented is 
allowing the nerf dart blaster to fire at close range objects, since its accuracy is less 
than that of the nerf balls. This would allow the nerf balls to be solely used for long 
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range objects for a potentially more accurate shot. These range values will be 
determined by the range finder, which will be positioned between both Nerf-blasters. 
  
As discussed in section 3.5, both Nerf-blasters’ mechanical switches will need to be 
connected as I/O pins to the ATMega328p. Therefore, all programming will need to 
interface through the Arduino in order to move the motors and fire the guns.   
  
As the Electrical team breaks down the plan for coding the Nerf-blaster to pan, tilt, and 
fire seamlessly, the first thing that needs to be addressed is the specified range that a 
Nerf-blaster is able to pan or tilt. The general idea is to program the robot’s pan range to 
be no larger than 180 degrees. This has been decided since it is ideal for the guns to be 
pointed towards the enemy at all times. Since it is known that the enemy will not appear 
behind us, the general field of view only needs to be at 180 degrees maximum. This will 
be a good starting point for further testing. As testing continues, this value can be 
improved and reduced accordingly.  
 
Just as the range that the Nerf-blaster will be able to pan must be decided, so must the 
tilt range. The value for the tilt should not exceed 90 degrees. If the Nerf-blaster is 
allowed to tilt too high or low, it will completely miss its target as it will be pointed 
towards the ceiling or ground. Again, the exact value determined to be the most suitable 
for the proposed system can only be decided after further testing and implementation of 
the design. A complete breakdown all components that will be necessary in order to 
program the Nerf-blaster’s pan and tilt capabilities are highlighted below in Figure 6.6: 
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Figure 6.6: Breakdown of Components for Nerf-Blaster’s Pan and Tilt 

(Team Designed) 
 

Another factor that must be considered regarding the movement of the Nerf-blaster 
deals with how fast to set the incrementation of degrees for both the pan and the tilt. 
This will be a constantly changing value determined by the speed of the moving target. 
This value can also be affected by the maximum speed that the motors will allow the 
Nerf-blaster to move. 
  
It has also been determined that the camera, range finder, and Nerf-blasters will be 
automatically panning until a target has been found. This code that will allow for both 
Nerf-blasters to continuously move from left to right and must be developed in order to 
give the Computer Science team the opportunity to lock onto targets that are detected 
through the sensors. Once the robot is in “attack” mode, the panning will continue until a 
target is acquired. 
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One key functionality that may be utilized within the programming of the Nerf-blaster is 
serial communication between the robot and the laptop for testing purposes. Extra code 
may be written during this testing phase to make sure that the guns are working 
accordingly before the Wi-Fi signal is setup between the robot and the laptop. Adding 
this functionality may lead to less errors and less startup time between tests for better 
results. 
  

6.7. ATmega328p 
 
The ATmega328p chip will be relied on heavily because of the sheer amount of 

component connections that will be made to it. This chip will be connected to the Nerf-

blaster firing mechanisms, range detection sensor, processing unit, servo motor 

controller, stepper motor controller, and DC motor controllers, which control the gear 

motors, that spin the wheels, and their respective encoders. Data will be coming in and 

out of quite a few components at once. 

  

Video imaging from the Logitech HD Pro Webcam C920, the vision sensor (otherwise 

known as a camera), will be processing on the Jetson TK1 using object and facial 

detection algorithms. As these objects and/or faces are detected, the coordinates 

(relative to the center of the camera and where the object was detected) and a request 

to fire will be sent out to the ATmega. 

  

When the request and its positioning data is picked up, the ATmega will then send out 

signals to the Servo Motor Controller and Stepper Motor Controller, which control the X 

and Y positioning of the firing system, to redirect the Nerf-blasters, camera, and the 

rangefinder towards the target’s position. 

  

The LIDAR-Lite 3, or the rangefinder, will be continuously pinging distance values to the 

ATmega which in turn will be sending these values to the Jetson TK1 processing unit. 

The Jetson TK1 will continue to wait until the rangefinder signals back to it whether the 

target is within firing distance or not. If the target is detected and within firing distance, 

the Jetson TK1 will send out a message to the ATmega chip to signal the firing 

mechanisms on the Nerf-blasters to fire. If the target is not within distance, the Jetson 

TK1 will have a couple options depending on the algorithm that will be implemented by 

the Computer Science team. For instance, if the target is not within firing range, the 

Jetson TK1 may message the ATmega to reposition the stepper and servo motors to a 

default position, where the battlebot will continue to scan and detect objects. 
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While a textual explanation of this process might imply that the process could take 

several minutes, the entire target detection and firing process should occur in about 

three seconds at its slowest point (where the panning and tilting motors would go from 

leftmost to rightmost). Most of this time will be consumed while waiting for the stepper 

and servo motors to turn towards the target. This target detection and firing process by 

the ATmega, in junction with other system data, is mapped in Figure 6.7. 

 

 
Figure 6.7: ATmega328p response to firing subsystem seen as a flowchart 

(Team Designed) 

  

Navigating the robot, by means of controlling the gear motors, will also be the 
responsibility of the ATmega chip. When a user sends navigational input via a wireless 
remote control, be it an actual remote control or the keyboard of a laptop, it is received 
by the Jetson TK1, however not physically processed by it. The Jetson TK1 delivers the 
input to the ATmega chip. It is then that the corresponding Motor Controllers (turning left 
or right and going forward or backward by any combination) receive the input and turn 
the gear motors as requested. 
 
When the gear motors turn, the encoders that are built into the gear motors send 
feedback to the ATmega. The ATmega then delivers this feedback to the Jetson TK1 for 
data analysis. This feedback is information on how far the wheels of the robot have 
turned, which may prove useful for tracking distance traveled by the robot on a size 
restricted course. Movement restrictions could be set into place, such as prohibiting the 
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robot from navigating further forwards if it means it would be crossing the course keep 
out area (crossing would lose points). 
 
The ATmega chip, in short, will be acting more as a messenger than a data processor, 
even though it is fully capable of doing so (albeit limited in comparison to the Raspberry 
Pi). The ATmega will be taking input and output and delivering that data to the 
appropriate receiver. 
 
Programmatically, the input and output data signals of the attached components will be 
configured and allocated by Electrical and Computer Engineering team in order for the 
Computer Science team to use for their algorithm design and processing. 

 
6.8. Communication 
 
The purpose of communication is for the microcontroller to be able receive motor 
commands sent by the Jetson TK1, and for the Jetson to receive Lidar readings sent by 
the microcontroller. The Serial protocol is used to implement the two way 
communication needed between the devices.  

 
The hardware chosen to perform the job is the HC-06 Bluetooth module which is 
attached to the microcontroller, and an Intel Dual-Band Wireless AC-7260 hooked to the 
Jetson TK1, which provides both Bluetooth and WiFi connection.  

 
To establish a connection between the two systems it was necessary to utilize the 
Bluetooth protocol RFCOMM on the Linux powered Jetson TK1. RFCOMM provided an 
API used to pair and connect the HC-06. A configuration file /etc/bluetooth/rfcomm.conf 
was made which allows us the option to create a serial device under rfcomm and to 
automatically bind or connect to the device. Once a connection between the Jetson TK1 
and the HC-06 is made a serial port we can use is made.  

 
AT commands were used to configure the port settings on the The HC-06. The Baud 
rate was set, the pair code was set, and the device name was changed to prevent any 
connection issues with other Bluetooth devices. The Jetson pairs the device via the 
Bluetooth GUI, and once the module has been paired the Jetson will not forget the HC-
06. Connection between is finally established when the device file is opened by our 
software system.  

 
Using the serial port on the Jetson is done by accessing the HC-06’s serial device file. 
The device filename in Linux is /dev/rfcomm0, and the software operations on the 
device file are done using the POSIX terminal interface. This interface is needed 
because the software implementation is to be done in the C++ language and is standard 
to Linux systems. The advantage to using this interface is it allows many serial 
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communication configurations to be made such as setting the baud rate, character size, 
parity checking, flow control, and timeouts.  

 
The most important setting being the baud rate set 115200, which needs to be agreed 
upon by both ends. The character size was set to 8 bits to receive bytes on both ends. 
Also an important detail of the software implementation is the use of a timer before 
reading or writing to the device file, as opening it will cause the microcontroller to 
reboot. To receive data the Jetson will read data from the Serial port and store the data 
in a buffer. Buffer size must be specified therefore we chose a size that is twice the size 
of our formatted message length to avoid overflow. Similarly the transmitting of data is 
done using a write function. 

 
The Arduino Serial library is used to establish communication on the microcontrollers 
end. Once the correct baud rate set, the microcontroller can both receive and transmit 
messages. The Arduino uses the Serial Available function to get the number of bytes it 
is being set. It then transmits to the serial port with the print function. Special care must 
be taken when reading this data as newline and carriage return bytes will be sent.  

 
Messages are sent in a formatted method both ways. Therefore the Jetson has a format 
to follow and the microcontroller knows what to expect. Each message coming from the 
Jetson specifies the instantaneous control over the motors, thus the microcontroller 
needs to continuously poll the Serial line for the robot to be responsive. The 
microcontroller also sends data in a formatted method to the Jetson which only contains 
the lidar readings. 
 
The benefits of choosing Arduino based microcontrollers are seen here as the Arduino 
Serial Library provides the programming functions to do this. Tables 6.1 - 6.6 are the 
functions available to initiate communication, read, and write data serially. 

 

Function begin() 

Description Sets the data rate in bits per second (baud) for serial data 
transmission. 

Syntax Serial.begin(speed, config) 

Parameters speed: in bits per second (baud) - long  
config: sets data, parity, and stop bits. 

Table 6.1: Arduino Serial Library begin 
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Function end() 

Description Disables serial communication.  

Syntax Serial.end() 

Table 6.2: Arduino Serial Library end 

 

Function find() 

Description Reads data from the serial buffer until the target string of given 
length is found. The function returns true if target string is found, 
false if it times out. 

Syntax Serial.find(target) 

Parameters target : the string to search for (char) 

Returns Boolean 

Table 6.3: Arduino Serial Library find 

Function findUntil() 

Description Reads data from the serial buffer until a target string of given 
length or terminator string is found. The function returns true if 
the target string is found, false if it times out. 

Syntax Serial.findUntil(target, terminal) 

Parameters target : the string to search for (char)  
terminal : the terminal string in the search (char) 

Returns  Boolean 

Table 6.4: Arduino Serial Library findUntil 

 

Function read() 

Description Reads incoming serial data. 

Syntax Serial.read() 

Returns The first byte of incoming serial data available (or -1 if no data is 
available) - int 

Table 6.5: Arduino Serial Library read 
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Function write() 

Description Writes binary data to the serial port. This data is sent as a byte or 
series of bytes; to send the characters representing the digits of a 
number use the print() function instead. 

Syntax Serial.write(val)  
Serial.write(str)  
Serial.write(buf, len) 

Parameters val: a value to send as a single byte 
str: a string to send as a series of bytes  
buf: an array to send as a series of bytes 
len: the length of the buffer 

Return byte write() will return the number of bytes written, though 
reading that number is optional 

Table 6.6: Arduino Serial Library write 

 

6.9. PID Controller- Arduino Library 

 

In order to have a system of motors consistently functioning precisely as we desire, we 

will need to implement a PID Controller. The PID controller will help determine the 

parameters we need to continually adjust as we analyze our inputs or digital commands, 

and the corresponding motor output or physical movement. Tables 6.7 to 6.10 show the 

functions made available by the Arduino PID Library we will use.  

 

Function PID() 

Description Creates a PID controller linked to the specified Input, Output, 
and Setpoint. The PID algorithm is in parallel form. 

Syntax PID(&Input, &Output, &Setpoint, Kp, Ki, Kd, Direction) 

Parameters Input: The variable we're trying to control (double)  
Output: The variable that will be adjusted by the pid (double) 
Setpoint: The value we want to Input to maintain (double)  
Kp, Ki, Kd: Tuning Parameters. these affect how the pid will 
change the output. (double>=0)  
Direction: Either DIRECT or REVERSE. determines which 
direction the output will move when faced with a given error. 

Table 6.7: Arduino PID Library - PID 
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Function Compute() 

Description Contains the pid algorithm. It should be called once every loop(). 
Most of the time it will just return without doing anything. At a 
frequency specified by SetSampleTime it will calculate a new 
Output. 

Syntax Compute() 

Parameters True: when the output is computed  
False: when nothing has been done 

Table 6.8: Arduino PID Library - Computer 

 

Function SetOutputLimits() 

Description The PID controller is designed to vary its output within a given 
range. By default this range is 0-255: the arduino PWM range. 

Syntax SetOutputLimits(min, max) 

Parameters min: Low end of the range. must be < max (double)  
max: High end of the range. must be > min (double) 

Table 6.9: Arduino PID Library - SetOutputLimits 

 

Function SetTunings() 

Description Tuning parameters (or "Tunings") dictate the dynamic behavior 
of the PID. Will it oscillate or not? Will it be fast or slow? An initial 
set of Tunings is specified when the PID is created. For most 
users this will be enough. There are times however, tunings 
need to be changed during run-time. At those times this function 
can be called. 

Syntax SetTunings(Kp, Ki, Kd) 

Parameters Kp: Determines how aggressively the PID reacts to the current 
amount of error (Proportional) (double >=0)  
Ki: Determines how aggressively the PID reacts to error over 
time (Integral) (double>=0)  
Kd: Determines how aggressively the PID reacts to the change 
in error (Derivative) (double>=0) 

Table 6.10: Arduino PID Library - SetTunings 
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7. Prototype Construction 
 
This section is to show the process of design and assembling for the PCB of this 
project. There also explains some manufacturing company comparisons with displayed 
schematics of the PCB designs. 
 

7.1. PCB Vendor and Assembly 
 
This section focuses on the different types of PCB vendor to consider for this project. 

7.1.1. Plan 

 
As a requirement for this project, a printed circuit board must be designed, assembled 
and manufactured. This portion of the project will be completed through companies that 
can specialize in this area. With several companies in the market, this section briefly 
discusses the three companies of choice and their services offered. 
 
One of the company that offers this service is Elecrow. They offer customized PCB 
manufacturing at a reasonable price. To acquire a PCB from Elecrow, Gerber files will 
be emailed to a specific project manager along with a bill of material and any PCB 
specifications and quantity size. Elecrow will bill the service based on the fabrication, 
the level of difficulty for soldering, the list of components needed and how many PCB’s 
that will need to be made. The time claimed to finish PCB assembly and manufacturing 
will only take from 3 to 5 days. 
 
Another company that can offer PCB assembly is Expresspcb. They offer services to a 
wide range of the different types of PCBs. The least expensive option is the Miniboard 
standard. These boards are a 2 layer pcb with no solder mask or silkscreen layers. 
They have a fixed size of 3.8 x 2.5 inches. They offer free software for schematic and 
PCB mapping. The files will be emailed to the company and they will send a quote of 
manufacturing and shipping costs and will send the boards.  
 
Advanced circuits provides discounts and sponsorships for students seeking to use 
printed circuit boards for their projects. With $33 for a PCB with a 2 layer full specified, 
small quantity, special. This company offers a turn time of same day to 5 days and can 
print up to 10,000 pcbs per order. The material they used is FR-4 which is grade 
designation to glass-reinforced laminate sheets.  
 
The plan for assembly is to order components for the schematics drawn, test and verify 
it is a working circuit on the breadboard. Then once its verified and working on the 
breadboard, there will be modifications towards the schematic before emailing the 
manufacturers to have the boards printed. 
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7.1.2. Final Decision 

 
We chose the company 4PCB as our vendor of choice. 4PCB has great pricing for 
standard printed circuit boards at the affordable price of $33 per board. 4PCB also had 
the quickest processing time, which was necessary since many changes were made to 
the board. As a result, a second PCB design had to be ordered in the final weeks of the 
project implementation. 
 
All assembly was carried out by team members. As a result, each component in the 
schematic had to fetch from certain libraries to ensure that the part was available for 
purchase so it could be properly soldered onto the board. All through hole components 
were chosen in the schematic to ease the process of assembly.  Every component was 
ordered ahead of time from various vendors. 
 

7.2. Schematics and Design 
 
Section 7.2 contains schematics for the microcontrollers that will be used in this project. 
The program used to design these schematics is the Eagle PCB Design version 7.7.0.  
The Figure 7.1 contains all the components and chips needed to power one 
microcontroller. This circuit is straightforward and contains power regulation circuit so 
the MCU will not overload with header pins that will be used to connect the different 
types of components needed for the robot.  
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Figure 7.1: Microcontroller Schematic 

(Team Designed) 
 
Figure 7.2 is the proposed PCB layout design. All the headers will be lined up for easy 
access of jumper wires. Due to space constraint to the robot, this PCB design is 
intended to be no bigger than 68.6x53.44 mm.  
 



 

111 
 

 
Figure 7.2: PCB Layout 

(Team Designed) 
 

This project will be required to use two MCU’s therefore two PCBs will be constructed. 
In Figure 7.3, contains a full design of how the two MCUs will interact with the different 
components of the project. Figure 7.3 will not be implemented into a PCB, but rather will 
serve the purpose of a guideline when it comes to testing and integrating all of the 
components. 
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Figure 7.3: Ideal full schematic design of robot 

(Team Designed) 
 
As the project moved on, more features were needed to implement the final design. In 
the figure below contains the final schematic design for the PCB requirement. Initially, 
the idea of two MCUs were going to be used to drive 4 motors but has changed to only 
two motors allowing more pins to be free.  
 
There were two PCB design changes. The first one was implemented to create space 
for stepper motor drivers and for initial NERF ball blasters. There were flaws in the 
amount of current allowed to each device therefore modifcations were to be made. 
 
In the final PCB design, the following features were added to meet the demands of the 
robot. The final PCB design contained several power ports to power the NERF blasters 
and the Jetson TK1. Connections for the Bluetooth, encoders and LIDAR were also 
used in the PCB. Finally MOSFET switches were used to ensure that the NERF 
Blasters could be fired digitally. 
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Figure 7.4  Full Schematic of final design 

 

 
Figure 7.5 PCB assembly 
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Figure 7.6 PCB Board layout 

 

7.3. Coding Plan 
 
In order to successfully implement the proposed system, a coding plan must be 
established in order to prioritize the work that must be accomplished. The following 
outline below highlights every task that must be accomplished as well as the order in 
which these tasks should be executed.  
 
I. ATMega328p communication with Raspberry Pi: 

a. Establishing communication between the Raspberry Pi and the ATMega328p 
is essential for the entire implementation of the proposed system. 

b. Every component in the proposed system will either be connected to the 
ATMega328p or the Raspberry Pi. 

c. In order to transmit data wirelessly, the Raspberry Pi will be used; therefore, 
data from the ATMega328p will be transferred to the Pi so it can reach the 
laptop. (ex. Manual Navigation data) 

II. Raspberry Pi receiving output from from the Logitech HD Pro Webcam 
a. This is essential to allow for the Computer Science team to start on their 

algorithm for autonomous detection. 
III. ATMega328p receiving output from the Lidar Lite 3 Rangefinder 

a. Again, this is essential so that the Computer Science team is able to start 
with their contribution to the project 

IV. Programming Stepper Motors to rotate Nerf-Blasters, Camera, and Rangefinder 
a. This is an important part of the overall development of the proposed 

system’s design.  
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b. This step is key to complete as soon as the connection has been established 
with the camera and rangefinder, since once an object has been detected, 
the system will aim and fire at that object. 

V. Programming the Nerf-Blasters to fire with a button from the laptop 
a. This will immensely assist with the Computer Science team’s plan to 

eventually autonomously aim and fire with the system. 
b. This feature is essential for further testing with the proposed system. 

VI. Programming the DC Motors to rotate appropriately for manual navigation of the 
robot 

a. Manual navigation is a key feature that will be very important to the overall 
design of the proposed system. 

b. However, manual navigation will not be possible until we can obtain the 
necessary components from the Mechanical Engineering team. 

c. Although testing and preliminary models can be designed to practice 
establishing manual navigation, it is not as pressing as other features that 
must be implemented first. 

 
8. Prototype Testing 

 
This chapter covers all the prototype testing for both hardware and software designs 
that will be taken place with strategic procedures to ensure all components are 
connected properly and integrated correctly. Testing will be an essential part of the 
overall development life cycle of the system.  
 
If either a software or a hardware design component does not pass a certain test, it will 
be tested again in order to figure out the possible problem. If a certain hardware 
component seems to be malfunctioning, a new component will be ordered in its place. If 
the component is not working due to faulty wiring, the team will have to redevelop their 
current design. If the component is not responding due to a software error, the team will 
have to rethink their current software design for a better solution. 
 

8.1. Hardware Testing 
  
This section focuses on hardware testing environments and planned procedures to 
ensure that each component is connected and working properly for the project. 
Hardware testing will be carried out accordingly once all parts arrive from their 
respective manufacturers. It is important that the hardware testing is carried out before 
software testing, since all software designs will be based on the assumption that the 
hardware is operating properly. Each section will contain a table labeling the type of 
testing with an objective and will then explain the practical procedure and the expected 
result from the testing. 
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8.1.1. Testing Environment 
  
The competition is set to be indoors away from any outside elements, therefore all 
testing will be indoors in a controlled environment. The component and PCB testing will 
be conducted in labs with desktop computers. This will ensure that all necessary 
materials for PCB testing will be provided and easily accessible by team members. 
Once the robot is assembled, the field testing will be conducted in a field similar to the 
dimensions used in Figure 2.1. 
 
The testing environment will be constructed duct-tape or rope to simulate the 
boundaries of the field. The testing environment will also have boxed to simulate 
obstacles that will be available during the competition. These obstacles must be present 
in the test environment, since the Computer Science team will need to avoid these 
obstacles within their algorithm. The testing environment will also have simulated 
targets, such as a box with a face on it for one of the stationary targets. The team will 
have a robot within the testing environment that will simulate an enemy for target 
practice as well. Someone will also be labeled as the medic to ensure that all methods 
of scoring are properly tested. 

 
8.1.2. Camera 
  
This section focuses on testing the camera through its hardware interactions to make 
sure that they are working seamlessly. The camera testing is an essential step towards 
a complete hardware design. Camera integration will allow us to successfully modify the 
system by being able to test whether the camera is properly connected. The camera will 
have to be connected to the Raspberry Pi in order to allow the Computer Science team 
to utilize their computer vision algorithms. Ultimately, the Raspberry Pi will be 
responsible for the image processing from data received by the camera. See Table 8.1 
for details. 
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Test Objective To test the camera module to turn on and show video stream of 

surroundings. 

Equipment 1.    Raspberry Pi 3 

2.    Logitech Webcam 

3.    Power supply 

4.    Desktop Computer 

Preparation 1.    Connect camera to Raspberry Pi. 

2.    Load program onto Raspberry Pi. 

3.    Open video viewer for camera. 

Procedure 1.    Check for all component connections. 

2.    Open video feed from computer 

Expected Result The video feed should show the camera’s view. 

Table 8.1: Camera Testing module 
  

8.1.3. Motors 
  
For testing the motors, it will be important that each motor is receiving power and 
running properly. DC motors will conduct a test through the designed PCB to make sure 
it is getting enough power. The stepper motors will be tested to ensure that they are 
rotating properly and connected securely to the PCB. Both the DC motors and the 
stepper motors will be connected to the power supply. It is essential that the DC motors 
tested thoroughly, since they will be in charge of manual navigation. However, it is also 
important that the stepper Motors are tested, since they will be in charge of the nerf-
blaster’s ability to pan and tilt.  
 
Additionally, the connections between the DC motors and the DC motor controller, as 
well as the Motor Controller for the stepper and servo motors will need to be tested. 
 

8.1.3.1. DC Motors 
  
This is the testing module (seen in Table 8.2) for the DC motors intended to drive the 
robot around. This test will ensure that the DC motors are able to rotate as they are 
designed to do. DC motors will be the main source that will allow for programming of the 
wireless manual navigation.  
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Test Objective To test whether the DC Motors are able to rotate properly once 

connected.  

Equipment 1. 4 DC Motors 

2. ATMega328p 

3. Power Supply 

4. 2 Dual Channel Motor driver 

5. Desktop for programming 

Preparation 1. Connect the two of the four DC motors to one motor driver. 

2. Connect the driver to the pins of the ATMega328. 

3. Repeat Steps 1 and 2 for the other two motors. 

4. Connect the driver and PCB to the power supply. 

5. Connect USB from computer program to the PCB. 

6. Turn on the power supply. 

Procedure 1. Load the test program to the microcontroller. 

2. Execute the test program. 

Expected Result The testing program should allow the DC motors to rotate to the 

user’s desired position. 

Table 8.2: DC motor testing module 
  

8.1.3.2. Stepper Motors 
 
This section contains the testing module for the two stepper motors that will be utilized 
for aiming the Nerf-blasters. The module (Table 8.3) goes into detail of the objective, 
equipment needed how to prepare for the testing and the procedure. The final result is 
the expect result and if not performed correctly will go through trouble-shooting methods 
to resolve the project. 
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Test Objective Ensure that the two Stepper motors are connected properly and 

can rotate from a code command. 

Equipment 1.    2 Stepper Motors 

2.    2 Stepper Motor Drivers 

3.    PCB design 

4.    Computer 

5.    Power supply 

Preparation 1.    Connect each stepper motor to respective motor driver. 

2.    Connect the stepper motor drivers to the power supply. 

3.    connect the motor driver to the PCB design. 

4.    Connect the PCB design to computer with program. 

5.    Turn on the power supply. 

Procedure 1.    Load the program onto the microcontroller. 

2.    Execute the program. 

Expected Result The program should command the stepper motors to turn a few 

phases either left or right. The stepper motors should be able to 

follow the program and end. 

Table 8.3: Stepper motor testing module 
 

8.1.4. Microcontrollers 
 
This section contains a testing module (Table 8.4) for the microcontroller units that will 
be used to control the motors and the sensors for the project. The microcontroller, 
ATMega328p, will connect almost every component within the proposed system. Some 
of the component that will be connected to the ATMega328p include the power supply, 
the DC and stepper motors, the Raspberry Pi, the Lidar Lite 3 Rangefinder, and the 
nerf-blasters. To ensure that the system design is functioning properly, there will be 
multiple, repetitive tests on the microcontroller.  
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Test Objective To ensure that the PCB designs are powered and each pin is 

functional. 

Equipment 1.   ATMega328p 

2.   Fuses 

3.   Diode 

4.   Capacitors 

5.   Resistors 

6.   LEDs 

7.   Clock Crystal 

8.   Push Button 

9.   5V power supply 

Preparation 1. Assemble the microcontrollers using all elements to complete 

the powering circuit. 

2. Boot load the ATMega328 with program. 

3. Connect power supply to the ATMega328p. 

4. Turn on power supply. 

Procedure 1. Run a program to enable a few pins at a time with an LED 

connected to each pin to be tested. 

Expected Result The LEDs should turn on for any pins enabled that would be used 

as an output. 

Table 8.4: Microcontroller testing module 
 

8.1.5. Nerf-Blaster Firing 
 
This testing module (seen in Table 8.5) goes through the preparation and procedure in 
order to fire the Nerf-blasters that will be controlled digitally. The nerf-blaster will be the 
main component that allow us to score in the competition. Since we will be 
programming the guns to fire using a MOSFET switch circuit, multiple tests will need to 
be performed to get the guns to fire without pulling the trigger. This will enable the 
Computer Science team to use this feature during their programming of the autonomous 
system. 
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Test Objective To ensure that the Nerf-blasters can be fired using a digitally 

controlled switch. 

Equipment 1. 2 Nerf-blasters 

2. ATMega328p 

3. MOSFET switch circuit 

4. Power Supply 

Preparation 1. Set up MOSFET Switch circuit to the ATMega328p. 

2. Connect the power supply to the two Nerf-blasters. 

3. Connect the output of the MOSFET switch circuit to the Nerf-

blasters. 

4. Turn on the power supply. 

5. Run program to enable the ATMega328p pins. 

Procedure 1. Run the program that will allow voltage to turn on the 

MOSFET 

2. Have program enable either Nerf-blaster 1 and 2 to fire 

Expected Result The Nerf-blaster should respond to the program execution to fire 

the darts and balls at a target. 

Table 8.5: Nerf-blaster firing testing module 
 

8.1.6. Rangefinder 
 
This is the testing module (see Table 8.6) for the LIDAR range finder with a full list of 
what needs to be accomplished for the LIDAR to do its function. The LIDAR range 
finder will need to be tested in order to prevent the system from firing outside of the 
course range. This will also need to be tested in order to prevent the range finder from 
firing within its own zone. The distance value given by the range finder will be able to 
label an individual as a “friend” or an “enemy”. Therefore, all of the functionality of the 
range finder listed above will be tested in order to make sure none of these errors occur. 
To begin these tests, it is important to test if the rangefinder is connected properly to the 
microcontroller. 
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Test Objective To test if the rangefinder is connected properly to the 

microcontrollers and can give a proper reading. 

Equipment 1. LIDAR Lite Range finder 

2. Microcontroller 

3. Wires 

4. Desktop Computer 

5. Power supply 

6. Measuring tape 

7. Object 

Preparation 1. Connect LIDAR to microcontroller 

2. Connect power supply to microcontroller and LIDAR 

3. Load program onto micro controller 

4. Turn on power supply 

5. Set and measure the distance of an object up to 40 ft. 

Procedure 1. Turn on all power components 

2. Load program onto microcontroller 

3. Aim LIDAR at pre-measured object 

4. Run the program 

Expected Result The LIDAR-Lite should turn on and record the distance of the 

object. If the object was 40ft away, the LIDAR should be able to 

detect and list the distance. 

Table 8.6: LIDAR integration testing module 
 

8.1.7. Power Distribution 
  
This is the testing module (see Table 8.7) for power distribution across the entire robot 
testing on a singular battery. Power should be distributed correctly throughout all 
components that connected to the proposed system. Power distribution is very 
important to test. During the competition, we do not want a particular component 
draining the bulk of the power supply. This would indeed cause our robot to lose power 
during the competition. Therefore, it is imperative to continue testing power distribution 
throughout the course of this project. 
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Test Objective To test all power distribution to all components using the battery 

so that every component is consuming the right amount of power. 

Equipment 1. Raspberry Pi 

2. Microcontrollers with voltage regulators 

3. 2 Sensors 

4. 4 DC motors 

5. 2 Stepper Motors 

6. 2 Nerf-blasters 

7. Battery 

8. Multi-meter 

Preparation 1. Connect each component to the battery 

2. Check all connections 

3. Run through each component for power calculation 

4. Fully charge battery 

Procedure 1. Turn on battery power 

Expected Result All components should be powered through one battery and work 

up to 40 minutes. 

Table 8.7: Power distribution testing module 
 

8.2. Software Testing 
 
This section highlights the necessary procedure in order to test the software developed 
for the proposed system. Each table clearly defines how the program will run, what 
hardware is required to execute the code, and the necessary steps required to allow for 
proper testing.  
 

8.2.1. Environment 
 
The environment in which all testing will be performed will consist of the following: This 
environment will be an indoor environment to simulate the same setting that will be 
present during the competition. This environment will also be an open space to prevent 
any outside factors from interfering with test results. The test environment will allow for 
multiple tests to be simulated so that every test can be executed properly. Finally, the 
test environment will have all outside materials necessary in order to complete each 
test. 
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8.2.2. Autonomous Detection 
 
These tests (seen in Table 8.8 and 8.9) will highlight the Electrical team’s plan to test 
the autonomous detection software that will be developed by the Computer Science 
team. This will help aid in the overall progression of the project. 
  

Test Objective To autonomously detect stationary and moving targets. 

Equipment 1. Logitech HD Pro Webcam 
2. Raspberry Pi 
3. ATMega328p 
4. Power Supply 
5. Desktop for programming 

Preparation 1. Connect the Logitech HD Pro Webcam to the Raspberry Pi 
2. Connect the Raspberry Pi the ATMega328 
3. Connect the power supply to the ATMega328 
4. Connect USB from computer program to the Raspberry Pi 
5. Turn on the power supply 

Procedure 1. Load the program to the Raspberry Pi that will be used to 
interface with the camera to detect objects 

2. Present an object that the robot has been trained to detect. 
3. Execute the test program 

Expected Result As the program is executed, the detected objects should be 
highlighted through the video feed streaming from the Logitech 
HD Pro Webcam. The detected objects should be indicated in 
some way as a friend or an enemy. 

Table 8.8: Autonomous Object Detection Test 
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Test Objective To autonomously detect human faces. 

Equipment 1. Logitech HD Pro Webcam 
2. Raspberry Pi 
3. ATMega328p 
4. Power Supply 
5. Desktop for programming 

Preparation 1. Connect the Logitech HD Pro Webcam to the Raspberry Pi 
2. Connect the Raspberry Pi the ATMega328 
3. Connect the power supply to the ATMega328 
4. Connect USB from computer program to the Raspberry Pi 
5. Turn on the power supply 

Procedure 1. Load the program to the Raspberry Pi that will be used to 
interface with the camera to detect human faces 

2. Present human face to camera 
3. Execute the test program 

Expected Result As the program is executed, the detected objects should be 
highlighted through the video feed streaming from the Logitech 
HD Pro Webcam. The detected objects should be indicated in 
some way as a friend or an enemy. 

Table 8.9: Autonomous Facial Detection Test 
 

8.2.3. Camera Sensor 
 
This test will be done to see if information can be gathered from the camera. Details can 
be seen in Table 8.10 below. 
 

Test Objective To receive and store input from the Logitech HD Pro webcam 

Equipment 1. Logitech HD Pro webcam 
2. Raspberry Pi 

Preparation 1. Connect the Logitech HD Pro Webcam to the Raspberry Pi 
2. Turn on Raspberry Pi 

Procedure 1. Open a terminal 
2. Execute “fswebcam image.jpg” command to take an image 

and save a jpeg 

Expected Result A photo will be taken and stored on file.  

Table 8.10: Camera Output Storage Test 
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8.2.4. Rangefinder Sensor 
 
This section illustrates the software development test plan that will be executed in order 
to check that information is being received from the Lidar Lite 3 Rangefinder accordingly 
(see Table 8.11).  
 

Test Objective To pull input from the LIDAR-Lite 3 Rangefinder into the software 

algorithm. 

Equipment 1. ATMega328p connected to PCB 

2. Power Supply 

3. Desktop  

4. Lidar Lite 3 Rangefinder 

Preparation 1. Connect the LIDAR-Lite 3 Rangefinder to the PCB. 

2. Connect the PCB to the Power Supply. 

3. Connect USB from the desktop to the PCB. 

4. Turn on the power supply. 

Procedure 1. Open a terminal. 

2. Execute command that will receive information from the 

LIDAR-Lite 3 rangefinder. 

3. Store this data into a usable variable. 

4. Read from variable. 

Expected Result As the command is executed, the rangefinder shall give 

information regarding the distance of a given object. This data 

should be stored into an easy to use format for use in algorithms 

developed by the Computer Science team. 

Table 8.11: Rangefinder Sensor Test 
 

8.2.5. Manual Navigation 
 
This test (see Table 8.12) highlights the steps required to test whether the programming 
done for the manual navigation has been implemented correctly. If there are any faults 
in this testing, a troubleshooting procedure will be taken to ensure all components are 
connected. 
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Test Objective All four motors are connected and can implement a tank drive. 

Equipment 1. 4 DC Motors 

2. ATMega328p 

3. Power Supply 

4. 2 Dual Channel Motor driver 

5. Desktop for programming 

Preparation 1. Connect the two of the four DC motors to one motor driver 

2. Connect the driver to the pins of the ATMega328 

3. Repeat Steps 1 and 2 for other two motors 

4. Connect the driver and PCB to the power supply 

5. Connect USB from computer program to the PCB 

6. Turn on the power supply 

Procedure 1. Using the WASD keyboard configuration from computer: 

a. Press the W key for forward rotation 

b. Press the S key for reverse rotation 

c. Press the A key for left rotation 

d. Press the D key for right rotation 

Expected Result As the W key is pressed, all the motors should be rotating in the 

forward direction. As the S key is pressed, the DC motors should 

turn in reverse. As the A key is pressed, the right pair of DC 

motors should rotate slower than the left pair of DC motors and 

vice versa for when the D key is pressed. 

Table 8.12: Manual Navigation Testing Module 
 

8.2.6. Nerf-Blaster Pan/Tilt Position 
 
This test illustrates what is required to test the user’s ability to control the Nerf-blaster’s 
position. This test will be crucial in allowing the Computer Science team to develop their 
algorithm. See Table 8.13 for more details. 
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Test Objective To be able to move the Nerf-blaster to the user’s desired position 

by programming the stepper motors to pan and tilt the turn axis. 

Equipment 1. 2 Stepper Motors 

2. 2 Stepper Motor Drivers 

3. ATMega328p connected to PCB 

4. Power Supply 

5. 2 Turn axis  

6. 2 Nerf-blasters 

7. Desktop for programming 

Preparation 1. Connect each stepper motor to a stepper motor driver 

2. Connect the driver to the pins of the ATMega328 

3. Connect the driver and PCB to the power supply 

4. Connect USB from computer program to the PCB 

5. Turn on the power supply 

6. Setup connection between each stepper motor and each turn 

axis 

7. Place Nerf-blasters inside each turn axis 

Procedure 1. Using the arrow keys on the user’s laptop, push the up arrow 

key to test if the guns will tilt in an upward position 

2. Push the down arrow key to tilt the guns in a downward 

position 

3. Push the right arrow key to pan guns to the right 

4. Push the left arrow key to pan guns to the left 

Expected Result As the up arrow key is pressed, the guns should tilt upward. As 

the down arrow key is pressed, the guns should tilt downward. As 

the left arrow key is pressed, the guns should pan to the left. As 

the right arrow key is pressed, the guns should pan to the right. 

Table 8.13: Nerf-blaster Pan and Tilt test 
 

8.2.7. ATmega328p Configuration 
 
The test case purposes for the ATmega328p are to ensure that there is direct 
communication with the Raspberry Pi 3 Model B and the Encoders that are attached to 
the Gear Motors. These test cases can be seen in detail in Table 8.14 and in Table 8.15 
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below. While there are several other components connected to the ATmega328p, test 
cases for those components and their subsystems have been or will be discussed in 
other sections of the testing chapter.  
  

Test Objective To check if the ATmega328p chip is receiving navigation input 

from the Raspberry Pi 3 Model B. 

Equipment 1. ATMega328p connected to PCB 

2. Raspberry Pi 3 Model B 

3. Power Supply 

4. Desktop for programming 

Preparation 1. Make sure ATMega328p is connected to Raspberry Pi 3 

Model B and that both devices are correctly connected to the 

power supply 

2. Turn on the power supply 

3. Establish a computer network connection to the Raspberry Pi 

either by LAN or Wi-Fi 

Procedure 1. Send mock navigational control signals to Raspberry Pi using 

the arrow keys on the computer 

2. Read data transmission logs from ATmega328p 

Expected Result The data logs from the ATmega328p should read that there were 

navigational signals (left, right, up, and down) transmitted to it. 

Table 8.14: Input from Raspberry Pi 3 Model B Test 
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Test Objective To check if the ATmega328p chip is receiving displacement input 

from the Encoders attached to the Gear Motors. 

Equipment 1. ATMega328p connected to PCB 

2. DC Motor Controllers 

3. Gear Motors with attached Encoders 

4. Raspberry Pi 3 Model B 

5. Power Supply 

6. Desktop for programming 

Preparation 1. Make sure ATMega328p is connected to Raspberry Pi 3 

Model B 

2. Connect Motor Controllers to ATMega328p 

3. Connect Gear Motors to Motor Controllers 

4. Connect Encoders to ATMega328p 

5. Establish that all components are connected to a power  

6. Turn on the power supply 

7. Establish a computer network connection to the Raspberry Pi 

either by LAN or Wi-Fi 

Procedure 1. Send navigational control signals to Raspberry Pi using the 

arrow keys on the computer 

2. Check to see that the wheels are turning 

3. If the wheels are turning, read data transmission logs from 

ATmega328p to see if displacement data is coming in 

4. If the wheels are not turning, recheck the component 

connections and repeat Step 3 

Expected Result The data logs from the ATmega328p should read that there were 

displacement values from the Encoders being sent to it. 

Table 8.15: Input from Encoders Test 
 

8.2.8. Communication 
 
This test (see Table 8.16) is about making sure the Jetson TK1 can read a message 
sent by the ATMega328p. Setting up communication between the ATMega328p and the 
Jetson TK1 will ensure that all necessary data can be transferred to the Pi in order to 
wirelessly transfer the data to the laptop. 
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Test Objective To check if the ATMega328p is able to transmit data to the Jetson 
TK1 3 Model B 

Equipment ATMega328p connected to PCB 

Jetson TK1 3 Model B 

Power Supply 

Preparation 1. Connect the Jetson TK1 to the ATMega328p on the PCB via 
USB 

2. Make sure the Jetson TK1 and PCB are powered and on. 
3. Install Arduino IDE on the Jetson TK1 
4. Install serialPy package on the Jetson TK1. 

Procedure 1. Run Arduino IDE on the Jetson TK1 
2. Use a test Processing language script with functions from the 

Arduino Serial Library such as “Serial, begin, println” begin 
serial transmission for the ATMega328p  

3. Use a test script Python script with functions imported from 
serialPy such as “readLine” to receive data from ATMega328p. 

Expected 
Results 

The string sent by the ATMega should display in the Python 
program running.  

Table 8.16: Jetson TK1 Receive Input from Microcontroller  
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9. Administrative 
 
Project management, in general, will come down to time management and budgeting. 
The following sections provides details on milestones accomplished and waiting to be 
accomplished throughout the project, from concept to completion. This section also 
contains details on how the battlebot stayed within the bounds of the project budget. 
 

9.1. Project Milestones 
 
A summary of milestones completed in Fall of 2016 is listed below in Table 9.1. 
  

Fall 2016 - Senior Design I 

Milestone Start End 

Researched Project Ideas 8/22/16 9/9/16 

Initial Project Idea Documentation 9/1/16 9/9/16 

First Half Hour Meeting 9/19/16 9/19/16 

First Sponsor Meeting 9/21/16 9/21/16 

Met Mechanical and Computer Science Teams 9/21/16 9/21/16 

First Sponsor Conference Call 9/30/16 9/30/16 

First All Teams Meeting 9/30/16 9/30/16 

Table of Contents 9/9/16 11/4/16 

Draft Document 9/9/16 11/11/16 

Last Half Hour Meeting 11/14/16 11/16/16 

Last Sponsor Conference Call 11/21/16 11/21/16 

Finalized Components List For Ordering 9/30/16 11/28/16 

Ordered Components 10/28/16 11/28/16 

Last All Teams Meeting 12/2/16 12/2/16 

Final Document 9/9/16 12/6/16 

Lockheed Martin PDR Presentation 11/2/16 12/13/16 

 Table 9.1: Fall 2016 milestones 
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A summary of milestones completed in Spring of 2017 is listed below in Table 9.2. 
 

Spring 2017 - Senior Design II 

Milestone Start End 

Test Components 12/15/16 1/15/17 

Build Prototype 1/16/17 2/26/17 

Test Prototype 2/26/17 3/02/17 

Finalize Project - 415/17 

Final Presentation 4/20/17 4/20/17 

Final Report - 4/27/17 

Battlebots Competition 4/14/17 4/14/17 

Table 9.2: Spring 2017 milestones 
 

9.2. Project Budget 
 
This project was sponsored by the company Lockheed Martin. They allowed a 
maximum budget of $2,000, with the limitation that the final product be at a maximum 
as-demonstrated cost of $1,000. The budgeting for this project can be seen in two 
separate tables. Table 9.3 consists of primary main components of the system and 
Table 9.4 contains items that are additions to the main components (e.g. a microSD 
card for the Jetson TK1 to run its operating system and respective processes on). 
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Component Name Quantity Cost Per Unit Total 

Image Sensor Logitech HD Pro Webcam 
C920 

1 $52.49 $52.49 

Rangefinder LIDAR-Lite 3 Laser Range 
Finder 

1 $112.49 $112.49 

Processing 
Unit 

Raspberry Pi 3 Model B 1 $35.99 $35.99 

Microcontroller ATmega328p 2 $13.48 $26.96 

Motorshield 10A Dual Channel Bi-
directional DC Motor Driver 

2 $23.49 $46.98 

Encoder *Attached to NeveRest 40 
Gearmotor 

4 $28.00 $112.00 

Servo Motor Futaba S3004 Standard 
Servo Motor 

2 $12.49 $24.98 

Stepper Motor 3V 1.7A 68oz-in Stepper 
Motor 

1 $16.95 $16.95 

Voltage 
Regulator 

5V 1.5A Switching Voltage 
Regulator 

1 $5.45 $5.45 

Nerf-blaster 
(Dart) 

CS-18 N-Strike Rapidstrike 1 $39.99 $39.99 

Nerf-blaster 
(Ball) 

Nerf Rival Zeus MXV-1200 1 $40.00 $40.00 

Total $514.28 

 Table 9.3: Project budget for main components 
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Component Name Quantity Cost Per Unit Total 

Miscellaneous 16 MHz Crystal 3 $0.86 $2.58 

Miscellaneous EasyDriver - Stepper Motor 
Driver 

2 $13.46 $26.92 

Miscellaneous SparkFun USB to Serial 
Breakout - FT232RL 

1 $13.46 $13.46 

Miscellaneous  USB 2.0 Cable A-Male to B-
Male 

1 $4.99 $4.99 

Miscellaneous 9V 1A Power Adapter for 
Arduino 

1 $5.59 $5.59 

Miscellaneous 32GB microSDHC USH-I 
card 

1 $9.95 $9.95 

Miscellaneous Elegoo Upgraded 
Electronics Kit 

1 $16.86 $16.86 

Total $80.35 

 Table 9.3: Project budget for complements of main components 
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10. Conclusion 
 
The design of the proposed system will highlight and demonstrate the technical skills 
that each team has acquired throughout the course of the engineering program. Every 
aspect of the current system’s design has been analyzed thoroughly with the hopes of 
developing a successful project. With thorough planning regarding research, hardware 
design, software design, and testing, the team has ultimately prepared for the build 
phase of the project’s implementation. 
 
As the semester has progressed, the team has developed a detailed list of components 
that will be used in this senior design project build. The team has also created a timeline 
of when tasks must be completed to keep all team members on schedule. The team has 
kept up with finances, constantly updating spreadsheets with new values of parts that 
will be ordered. Although all of this tedious planning has been executed to the utmost 
degree, the team must expect changes and must be willing to adapt as the project 
moves into the development phase. 
 
Working cross-discipline with other majors has allowed the Electrical and Computer 
Engineering team to gain experience that is closer to the real world. Dealing with 
various team members from different disciplines can be fairly common in the 
engineering work environment. This opportunity of learning and engaging with other 
individuals has been truly enlightening for the Electrical and Computer Engineering 
team, as many new ideas have continued to develop throughout the project’s planning 
phase. 
 
The key purpose of the Nerf-Enabled Battlebot is to be able to autonomously detect, 
aim, and fire at an enemy target. This opportunity to build the proposed system has 
allowed the Red team to be exposed to new concepts regarding computer vision and 
autonomous robot systems. Given the opportunity to learn and develop regarding 
electrical components and how they affect the autonomy of the system, the Computer 
and Electrical team have truly grown, and will continue to grow in the following 
semester. 
 
The Electrical and Computer Science team has set certain goals for the next semester. 
As a whole with the other majors, the team hopes to win the battlebot competition 
against the other teams that will be competing. The team also hopes to have a fair and 
friendly competition with competitors. The team will be trying to get the implementation 
of the proposed system completed as early as possible in order to allow for multiple 
changes. The final goal of this team is to work together and pull through the final course 
of the engineering degree.  
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6.1 Arduino Serial Library begin 
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No. Description 
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